-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcollect_env_info.py
349 lines (270 loc) · 9.96 KB
/
collect_env_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# This script outputs relevant system environment info
# Run it with `python collect_env.py`.
from __future__ import absolute_import, division, print_function, unicode_literals
import locale
import re
import subprocess
import sys
import os
from collections import namedtuple
try:
import torch
TORCH_AVAILABLE = True
except (ImportError, NameError, AttributeError):
TORCH_AVAILABLE = False
try:
import faiss
FAISS_AVAILABLE = True
except (ImportError, NameError, AttributeError):
FAISS_AVAILABLE = False
PY3 = sys.version_info >= (3, 0)
# System Environment Information
SystemEnv = namedtuple('SystemEnv', [
'torch_version',
'is_debug_build',
'cuda_compiled_version',
'faiss_version',
'gcc_version',
'cmake_version',
'os',
'python_version',
'is_cuda_available',
'cuda_runtime_version',
'nvidia_driver_version',
'cudnn_version',
])
def run(command):
"""Returns (return-code, stdout, stderr)"""
p = subprocess.Popen(command, stdout=subprocess.PIPE,
stderr=subprocess.PIPE, shell=True)
output, err = p.communicate()
rc = p.returncode
if PY3:
enc = locale.getpreferredencoding()
output = output.decode(enc)
err = err.decode(enc)
return rc, output.strip(), err.strip()
def run_and_read_all(run_lambda, command):
"""Runs command using run_lambda; reads and returns entire output if rc is 0"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
return out
def run_and_parse_first_match(run_lambda, command, regex):
"""Runs command using run_lambda, returns the first regex match if it exists"""
rc, out, _ = run_lambda(command)
if rc != 0:
return None
match = re.search(regex, out)
if match is None:
return None
return match.group(1)
def get_conda_packages(run_lambda):
if get_platform() == 'win32':
grep_cmd = r'findstr /R "torch numpy cudatoolkit soumith mkl magma"'
else:
grep_cmd = r'grep "torch\|numpy\|cudatoolkit\|soumith\|mkl\|magma"'
conda = os.environ.get('CONDA_EXE', 'conda')
out = run_and_read_all(run_lambda, conda + ' list | ' + grep_cmd)
if out is None:
return out
# Comment starting at beginning of line
comment_regex = re.compile(r'^#.*\n')
return re.sub(comment_regex, '', out)
def get_gcc_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
def get_cmake_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)')
def get_nvidia_driver_version(run_lambda):
if get_platform() == 'darwin':
cmd = 'kextstat | grep -i cuda'
return run_and_parse_first_match(run_lambda, cmd,
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
smi = get_nvidia_smi()
return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ')
def get_gpu_info(run_lambda):
if get_platform() == 'darwin':
if TORCH_AVAILABLE and torch.cuda.is_available():
return torch.cuda.get_device_name(None)
return None
smi = get_nvidia_smi()
uuid_regex = re.compile(r' \(UUID: .+?\)')
rc, out, _ = run_lambda(smi + ' -L')
if rc != 0:
return None
# Anonymize GPUs by removing their UUID
return re.sub(uuid_regex, '', out)
def get_running_cuda_version(run_lambda):
return torch.version.cuda
def get_cudnn_version(run_lambda):
return torch.backends.cudnn.version()
def get_nvidia_smi():
# Note: nvidia-smi is currently available only on Windows and Linux
smi = 'nvidia-smi'
if get_platform() == 'win32':
smi = '"C:\\Program Files\\NVIDIA Corporation\\NVSMI\\%s"' % smi
return smi
def get_platform():
if sys.platform.startswith('linux'):
return 'linux'
elif sys.platform.startswith('win32'):
return 'win32'
elif sys.platform.startswith('cygwin'):
return 'cygwin'
elif sys.platform.startswith('darwin'):
return 'darwin'
else:
return sys.platform
def get_mac_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion', r'(.*)')
def get_windows_version(run_lambda):
return run_and_read_all(run_lambda, 'wmic os get Caption | findstr /v Caption')
def get_lsb_version(run_lambda):
return run_and_parse_first_match(run_lambda, 'lsb_release -a', r'Description:\t(.*)')
def check_release_file(run_lambda):
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
r'PRETTY_NAME="(.*)"')
def get_os(run_lambda):
platform = get_platform()
if platform == 'win32' or platform == 'cygwin':
return get_windows_version(run_lambda)
if platform == 'darwin':
version = get_mac_version(run_lambda)
if version is None:
return None
return 'Mac OSX {}'.format(version)
if platform == 'linux':
# Ubuntu/Debian based
desc = get_lsb_version(run_lambda)
if desc is not None:
return desc
# Try reading /etc/*-release
desc = check_release_file(run_lambda)
if desc is not None:
return desc
return platform
# Unknown platform
return platform
def get_pip_packages(run_lambda):
"""Returns `pip list` output. Note: will also find conda-installed pytorch
and numpy packages."""
# People generally have `pip` as `pip` or `pip3`
def run_with_pip(pip):
if get_platform() == 'win32':
grep_cmd = r'findstr /R "numpy torch"'
else:
grep_cmd = r'grep "torch\|numpy"'
return run_and_read_all(run_lambda, pip + ' list --format=freeze | ' + grep_cmd)
if not PY3:
return 'pip', run_with_pip('pip')
# Try to figure out if the user is running pip or pip3.
out2 = run_with_pip('pip')
out3 = run_with_pip('pip3')
num_pips = len([x for x in [out2, out3] if x is not None])
if num_pips == 0:
return 'pip', out2
if num_pips == 1:
if out2 is not None:
return 'pip', out2
return 'pip3', out3
# num_pips is 2. Return pip3 by default b/c that most likely
# is the one associated with Python 3
return 'pip3', out3
def get_env_info():
run_lambda = run
if TORCH_AVAILABLE:
version_str = torch.__version__
debug_mode_str = torch.version.debug
cuda_available_str = torch.cuda.is_available()
cuda_version_str = torch.version.cuda
else:
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
if FAISS_AVAILABLE:
if hasattr(faiss, '__version__'):
faiss_verion_str = faiss.__version__
else:
faiss_verion_str = '< 1.5.0 (exact version is unavailable)'
else:
faiss_verion_str = 'N/A'
return SystemEnv(
torch_version=version_str,
is_debug_build=debug_mode_str,
python_version='{}.{}'.format(sys.version_info[0], sys.version_info[1]),
is_cuda_available=cuda_available_str,
cuda_compiled_version=cuda_version_str,
faiss_version=faiss_verion_str,
cuda_runtime_version=get_running_cuda_version(run_lambda),
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
cudnn_version=get_cudnn_version(run_lambda),
os=get_os(run_lambda),
gcc_version=get_gcc_version(run_lambda),
cmake_version=get_cmake_version(run_lambda),
)
env_info_fmt = """
PyTorch version: {torch_version}
Is debug build: {is_debug_build}
CUDA used to build PyTorch: {cuda_compiled_version}
FAISS version: {faiss_version}
OS: {os}
GCC version: {gcc_version}
CMake version: {cmake_version}
Python version: {python_version}
Is CUDA available: {is_cuda_available}
CUDA runtime version: {cuda_runtime_version}
Nvidia driver version: {nvidia_driver_version}
cuDNN version: {cudnn_version}
""".strip()
def pretty_str(envinfo):
def replace_nones(dct, replacement='Could not collect'):
for key in dct.keys():
if dct[key] is not None:
continue
dct[key] = replacement
return dct
def replace_bools(dct, true='Yes', false='No'):
for key in dct.keys():
if dct[key] is True:
dct[key] = true
elif dct[key] is False:
dct[key] = false
return dct
def prepend(text, tag='[prepend]'):
lines = text.split('\n')
updated_lines = [tag + line for line in lines]
return '\n'.join(updated_lines)
def replace_if_empty(text, replacement='No relevant packages'):
if text is not None and len(text) == 0:
return replacement
return text
def maybe_start_on_next_line(string):
# If `string` is multiline, prepend a \n to it.
if string is not None and len(string.split('\n')) > 1:
return '\n{}\n'.format(string)
return string
mutable_dict = envinfo._asdict()
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
dynamic_cuda_fields = [
'cuda_runtime_version',
'nvidia_driver_version',
]
all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
all_dynamic_cuda_fields_missing = all(
mutable_dict[field] is None for field in dynamic_cuda_fields)
if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
for field in all_cuda_fields:
mutable_dict[field] = 'No CUDA'
if envinfo.cuda_compiled_version is None:
mutable_dict['cuda_compiled_version'] = 'None'
# Replace True with Yes, False with No
mutable_dict = replace_bools(mutable_dict)
# Replace all None objects with 'Could not collect'
mutable_dict = replace_nones(mutable_dict)
return env_info_fmt.format(**mutable_dict)
def get_pretty_env_info():
return pretty_str(get_env_info())
def main():
print("Collecting environment information...")
output = get_pretty_env_info()
print(output)
if __name__ == '__main__':
main()