-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinvolution.py
275 lines (238 loc) · 11.1 KB
/
involution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from torch.autograd import Function
import torch
from torch.nn.modules.utils import _pair
import torch.nn as nn
from mmcv.cnn import ConvModule
from collections import namedtuple
import cupy
from string import Template
Stream = namedtuple('Stream', ['ptr'])
def Dtype(t):
if isinstance(t, torch.cuda.FloatTensor):
return 'float'
elif isinstance(t, torch.cuda.DoubleTensor):
return 'double'
@cupy._util.memoize(for_each_device=True)
def load_kernel(kernel_name, code, **kwargs):
code = Template(code).substitute(**kwargs)
kernel_code = cupy.cuda.compile_with_cache(code)
return kernel_code.get_function(kernel_name)
CUDA_NUM_THREADS = 1024
kernel_loop = '''
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
i < (n); \
i += blockDim.x * gridDim.x)
'''
def GET_BLOCKS(N):
return (N + CUDA_NUM_THREADS - 1) // CUDA_NUM_THREADS
_involution_kernel = kernel_loop + '''
extern "C"
__global__ void involution_forward_kernel(
const ${Dtype}* bottom_data, const ${Dtype}* weight_data, ${Dtype}* top_data) {
CUDA_KERNEL_LOOP(index, ${nthreads}) {
const int n = index / ${channels} / ${top_height} / ${top_width};
const int c = (index / ${top_height} / ${top_width}) % ${channels};
const int h = (index / ${top_width}) % ${top_height};
const int w = index % ${top_width};
const int g = c / (${channels} / ${groups});
${Dtype} value = 0;
#pragma unroll
for (int kh = 0; kh < ${kernel_h}; ++kh) {
#pragma unroll
for (int kw = 0; kw < ${kernel_w}; ++kw) {
const int h_in = -${pad_h} + h * ${stride_h} + kh * ${dilation_h};
const int w_in = -${pad_w} + w * ${stride_w} + kw * ${dilation_w};
if ((h_in >= 0) && (h_in < ${bottom_height})
&& (w_in >= 0) && (w_in < ${bottom_width})) {
const int offset = ((n * ${channels} + c) * ${bottom_height} + h_in)
* ${bottom_width} + w_in;
const int offset_weight = ((((n * ${groups} + g) * ${kernel_h} + kh) * ${kernel_w} + kw) * ${top_height} + h)
* ${top_width} + w;
value += weight_data[offset_weight] * bottom_data[offset];
}
}
}
top_data[index] = value;
}
}
'''
_involution_kernel_backward_grad_input = kernel_loop + '''
extern "C"
__global__ void involution_backward_grad_input_kernel(
const ${Dtype}* const top_diff, const ${Dtype}* const weight_data, ${Dtype}* const bottom_diff) {
CUDA_KERNEL_LOOP(index, ${nthreads}) {
const int n = index / ${channels} / ${bottom_height} / ${bottom_width};
const int c = (index / ${bottom_height} / ${bottom_width}) % ${channels};
const int h = (index / ${bottom_width}) % ${bottom_height};
const int w = index % ${bottom_width};
const int g = c / (${channels} / ${groups});
${Dtype} value = 0;
#pragma unroll
for (int kh = 0; kh < ${kernel_h}; ++kh) {
#pragma unroll
for (int kw = 0; kw < ${kernel_w}; ++kw) {
const int h_out_s = h + ${pad_h} - kh * ${dilation_h};
const int w_out_s = w + ${pad_w} - kw * ${dilation_w};
if (((h_out_s % ${stride_h}) == 0) && ((w_out_s % ${stride_w}) == 0)) {
const int h_out = h_out_s / ${stride_h};
const int w_out = w_out_s / ${stride_w};
if ((h_out >= 0) && (h_out < ${top_height})
&& (w_out >= 0) && (w_out < ${top_width})) {
const int offset = ((n * ${channels} + c) * ${top_height} + h_out)
* ${top_width} + w_out;
const int offset_weight = ((((n * ${groups} + g) * ${kernel_h} + kh) * ${kernel_w} + kw) * ${top_height} + h_out)
* ${top_width} + w_out;
value += weight_data[offset_weight] * top_diff[offset];
}
}
}
}
bottom_diff[index] = value;
}
}
'''
_involution_kernel_backward_grad_weight = kernel_loop + '''
extern "C"
__global__ void involution_backward_grad_weight_kernel(
const ${Dtype}* const top_diff, const ${Dtype}* const bottom_data, ${Dtype}* const buffer_data) {
CUDA_KERNEL_LOOP(index, ${nthreads}) {
const int h = (index / ${top_width}) % ${top_height};
const int w = index % ${top_width};
const int kh = (index / ${kernel_w} / ${top_height} / ${top_width})
% ${kernel_h};
const int kw = (index / ${top_height} / ${top_width}) % ${kernel_w};
const int h_in = -${pad_h} + h * ${stride_h} + kh * ${dilation_h};
const int w_in = -${pad_w} + w * ${stride_w} + kw * ${dilation_w};
if ((h_in >= 0) && (h_in < ${bottom_height})
&& (w_in >= 0) && (w_in < ${bottom_width})) {
const int g = (index / ${kernel_h} / ${kernel_w} / ${top_height} / ${top_width}) % ${groups};
const int n = (index / ${groups} / ${kernel_h} / ${kernel_w} / ${top_height} / ${top_width}) % ${num};
${Dtype} value = 0;
#pragma unroll
for (int c = g * (${channels} / ${groups}); c < (g + 1) * (${channels} / ${groups}); ++c) {
const int top_offset = ((n * ${channels} + c) * ${top_height} + h)
* ${top_width} + w;
const int bottom_offset = ((n * ${channels} + c) * ${bottom_height} + h_in)
* ${bottom_width} + w_in;
value += top_diff[top_offset] * bottom_data[bottom_offset];
}
buffer_data[index] = value;
} else {
buffer_data[index] = 0;
}
}
}
'''
class _involution(Function):
@staticmethod
def forward(ctx, input, weight, stride, padding, dilation):
assert input.dim() == 4 and input.is_cuda
assert weight.dim() == 6 and weight.is_cuda
batch_size, channels, height, width = input.size()
kernel_h, kernel_w = weight.size()[2:4]
output_h = int((height + 2 * padding[0] - (dilation[0] * (kernel_h - 1) + 1)) / stride[0] + 1)
output_w = int((width + 2 * padding[1] - (dilation[1] * (kernel_w - 1) + 1)) / stride[1] + 1)
output = input.new(batch_size, channels, output_h, output_w)
n = output.numel()
with torch.cuda.device_of(input):
f = load_kernel('involution_forward_kernel', _involution_kernel, Dtype=Dtype(input), nthreads=n,
num=batch_size, channels=channels, groups=weight.size()[1],
bottom_height=height, bottom_width=width,
top_height=output_h, top_width=output_w,
kernel_h=kernel_h, kernel_w=kernel_w,
stride_h=stride[0], stride_w=stride[1],
dilation_h=dilation[0], dilation_w=dilation[1],
pad_h=padding[0], pad_w=padding[1])
f(block=(CUDA_NUM_THREADS, 1, 1),
grid=(GET_BLOCKS(n), 1, 1),
args=[input.data_ptr(), weight.data_ptr(), output.data_ptr()],
stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))
ctx.save_for_backward(input, weight)
ctx.stride, ctx.padding, ctx.dilation = stride, padding, dilation
return output
@staticmethod
def backward(ctx, grad_output):
# assert grad_output.is_cuda and grad_output.is_contiguous()
input, weight = ctx.saved_tensors
stride, padding, dilation = ctx.stride, ctx.padding, ctx.dilation
batch_size, channels, height, width = input.size()
kernel_h, kernel_w = weight.size()[2:4]
output_h, output_w = grad_output.size()[2:]
grad_input, grad_weight = None, None
opt = dict(Dtype=Dtype(grad_output),
num=batch_size, channels=channels, groups=weight.size()[1],
bottom_height=height, bottom_width=width,
top_height=output_h, top_width=output_w,
kernel_h=kernel_h, kernel_w=kernel_w,
stride_h=stride[0], stride_w=stride[1],
dilation_h=dilation[0], dilation_w=dilation[1],
pad_h=padding[0], pad_w=padding[1])
with torch.cuda.device_of(input):
if ctx.needs_input_grad[0]:
grad_input = input.new(input.size())
n = grad_input.numel()
opt['nthreads'] = n
f = load_kernel('involution_backward_grad_input_kernel',
_involution_kernel_backward_grad_input, **opt)
f(block=(CUDA_NUM_THREADS, 1, 1),
grid=(GET_BLOCKS(n), 1, 1),
args=[grad_output.data_ptr(), weight.data_ptr(), grad_input.data_ptr()],
stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))
if ctx.needs_input_grad[1]:
grad_weight = weight.new(weight.size())
n = grad_weight.numel()
opt['nthreads'] = n
f = load_kernel('involution_backward_grad_weight_kernel',
_involution_kernel_backward_grad_weight, **opt)
f(block=(CUDA_NUM_THREADS, 1, 1),
grid=(GET_BLOCKS(n), 1, 1),
args=[grad_output.data_ptr(), input.data_ptr(), grad_weight.data_ptr()],
stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))
return grad_input, grad_weight, None, None, None
def _involution_cuda(input, weight, bias=None, stride=1, padding=0, dilation=1):
""" involution kernel
"""
assert input.size(0) == weight.size(0)
assert input.size(-2) // stride == weight.size(-2)
assert input.size(-1) // stride == weight.size(-1)
if input.is_cuda:
out = _involution.apply(input, weight, _pair(stride), _pair(padding), _pair(dilation))
if bias is not None:
out += bias.view(1, -1, 1, 1)
else:
raise NotImplementedError
return out
class involution(nn.Module):
def __init__(self,
channels,
kernel_size,
stride):
super(involution, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.channels = channels
reduction_ratio = 5
self.group_channels = 3
self.groups = self.channels // self.group_channels
self.conv1 = ConvModule(
in_channels=channels,
out_channels=channels // reduction_ratio,
kernel_size=1,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'))
if self.groups == 0:
self.groups = 1
self.conv2 = ConvModule(
in_channels=channels // reduction_ratio,
out_channels=kernel_size ** 2 * self.groups,
kernel_size=1,
stride=1)
if stride > 1:
self.avgpool = nn.AvgPool2d(stride, stride)
def forward(self, x):
weight = self.conv2(self.conv1(x if self.stride == 1 else self.avgpool(x)))
b, c, h, w = weight.shape
weight = weight.view(b, self.groups, self.kernel_size, self.kernel_size, h, w)
out = _involution_cuda(x, weight, stride=self.stride, padding=(self.kernel_size - 1) // 2)
return out