-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcell_iou.py
75 lines (65 loc) · 3.16 KB
/
cell_iou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from typing import List
import torch
import torchmetrics
from torch import Tensor
class CellIoU(torchmetrics.Metric):
"""This class implements the cell class IoU for the YIM dataset format."""
def __init__(self, cell_class_index: int = 1) -> None:
"""Constructor method.
Args:
cell_class_index (int): Cell class index. Default 1.
"""
# Call super constructor
super(CellIoU, self).__init__()
# Save parameter
self.cell_class_index: int = cell_class_index
# Init states
self.add_state("intersection", default=torch.tensor(0), dist_reduce_fx="sum")
self.add_state("union", default=torch.tensor(0), dist_reduce_fx="sum")
def update(
self,
instances_pred: List[Tensor],
classes_pred: List[Tensor],
instances_target: List[Tensor],
classes_target: List[Tensor],
) -> None:
"""Updates the state of the metrix with a new sample.
Notes:
instances_pred must be a binary map without overlapping instances.
classes_pred must entail the semantic class not the logit vector.
If no instance was detected the respective list entry should be None!
We assume that at least a single object is present in the label!
We also assume that the spatial dimensions between the label and the prediction are matching.
Args:
instances_pred (List[Tensor]): List of instance masks each of shape [N, H, W].
classes_pred (List[Tensor]): List of semantic classes each of the shape [N].
instances_target (List[Tensor]): List of instance mask labels each of shape [N, H, W].
classes_target (List[Tensor]): List of semantic class labels each of the shape [N].
"""
# Make semantic label
semantic_target: Tensor = torch.zeros(
len(classes_target), instances_target[0].shape[-2], instances_target[0].shape[-1]
)
for index, classes in enumerate(classes_target):
semantic_target[index] = (classes.view(-1, 1, 1) * instances_target[index]).sum(dim=0)
# Make semantic prediction
semantic_pred: Tensor = torch.zeros(
len(classes_pred), instances_target[0].shape[-2], instances_target[0].shape[-1]
)
for index, classes in enumerate(classes_pred):
if classes is not None:
semantic_pred[index] = (classes.view(-1, 1, 1) * instances_pred[index]).sum(dim=0)
# Get semantic cell maps
semantic_cell_target: Tensor = semantic_target == self.cell_class_index
semantic_cell_pred: Tensor = semantic_pred == self.cell_class_index
# Compute intersection and union
self.intersection += torch.logical_and(semantic_cell_target, semantic_cell_pred).sum()
self.union += torch.logical_or(semantic_cell_target, semantic_cell_pred).sum()
def compute(self) -> Tensor:
"""Method computes the final metric.
Returns:
cell_iou (Tensor): Cell IoU metric.
"""
# Compute cell class IoU
cell_iou: Tensor = self.intersection / self.union.clip(min=1e-06)
return cell_iou