-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpreprocessing.py
executable file
·514 lines (435 loc) · 26.7 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import sys
import os
import datetime
import PIL.Image
import numpy as np
import math
from tifffile import TiffFile
from xml.etree import ElementTree
from skimage.filters import threshold_multiotsu
from skimage.io import imsave, imread
from skimage.transform import resize
import cv2
PIL.Image.MAX_IMAGE_PIXELS = 10000000000
pipex_max_resolution = 30000
if "PIPEX_MAX_RESOLUTION" in os.environ:
pipex_max_resolution = int(os.environ.get('PIPEX_MAX_RESOLUTION'))
pipex_scale_factor = 0
data_folder = './data'
preprocess_markers = []
thres_min = 0.0
thres_max = 1.0
otsu_threshold_levels = -1
bin_min = 0
bin_max = 2
exposure = 1.0
tile_size = 0
light_gradient = 0
flatten_spots = 'no'
balance_tiles = 'no'
stitch_size = 0
def downscale_images(np_img):
if len(np_img) > pipex_max_resolution or len(np_img[0]) > pipex_max_resolution:
global pipex_scale_factor
if pipex_scale_factor == 0:
i = 2
while pipex_scale_factor == 0:
if max(len(np_img), len(np_img[0])) / i <= pipex_max_resolution:
pipex_scale_factor = i
else:
i = i * 2
return resize(np_img, (len(np_img) / pipex_scale_factor, len(np_img[0]) / pipex_scale_factor), order=0, preserve_range=True, anti_aliasing=False).astype('uint16')
return np_img
def upscale_results(marker):
if pipex_scale_factor > 0:
image = PIL.Image.open(os.path.join(data_folder, "preprocessed", marker + ".tif"))
image = image.resize((image.size[0] * pipex_scale_factor, image.size[1] * pipex_scale_factor))
image.save(os.path.join(data_folder, "preprocessed", marker + ".tif"))
def rescale_tile_intensity(x, mean_in, mean_factor, dev_in, dev_factor, bins):
if x == 0:
return
result = min(max(0.0, x + (mean_in * mean_factor) - mean_in), 1.0)
result_dev = ((x - mean_in) * dev_factor) - (x - mean_in)
result = min(max(0.0, result + result_dev if x >= mean_in else - result_dev), 1.0)
if result > bins[bin_max]:
result = bins[bin_max] + math.pow((result - bins[bin_max]) * 100, 0.6) / 100
elif result < bins[bin_min]:
result = bins[bin_min] - math.pow((bins[bin_min] - result) * 100, 0.6) / 100
return result
def apply_tile_compensation(f_name, np_img, bins, tile_data, local_tile_size, local_stitch_size):
num_rows = int(len(np_img) / local_tile_size)
num_columns = int(len(np_img[0]) / local_tile_size)
for row in range(num_rows):
for column in range(num_columns):
if tile_data['tiles'][row][column]['samples'] > 0:
tile = np_img[(row * local_tile_size):((row + 1) * local_tile_size), (column * local_tile_size):((column + 1) * local_tile_size)]
mean_factor = tile_data['chosen']['mean'] / tile_data['tiles'][row][column]['mean']
dev_factor = tile_data['chosen']['deviation'] / max(0.001, tile_data['tiles'][row][column]['deviation'])
values = tile[np.nonzero(tile)]
curr_mean = np.mean(values)
curr_dev = np.std(values)
np_img[(row * local_tile_size):((row + 1) * local_tile_size), (column * local_tile_size):((column + 1) * local_tile_size)] = np.reshape(np.array([rescale_tile_intensity(x, curr_mean, mean_factor, curr_dev, dev_factor, bins) for x in np.ravel(tile)]), (local_tile_size, local_tile_size))
if tile_size == local_tile_size:
print(">>> Balanced tiles for image",f_name,"=",datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"),flush=True)
if local_stitch_size > 0:
for row in range(num_rows):
for column in range(num_columns):
if row < num_rows - 1:
for gradient in range(3):
streg_min_y = int((row + 1) * local_tile_size - local_stitch_size / pow(2, (gradient + 1)))
streg_max_y = int((row + 1) * local_tile_size + local_stitch_size / pow(2, (gradient + 1)))
streg_min_x = int(column * local_tile_size)
streg_max_x = int((column + 1) * local_tile_size)
stitch = np_img[streg_min_y:streg_max_y,streg_min_x:streg_max_x]
kernel_size = 1 + gradient * 2
np_img[streg_min_y:streg_max_y, streg_min_x:streg_max_x] = cv2.GaussianBlur(stitch, (kernel_size, kernel_size), 0)
if (column < num_columns - 1):
for gradient in range(3):
streg_min_y = int(row * local_tile_size - (local_stitch_size / pow(2, (gradient + 1)) if row > 0 else 0))
streg_max_y = int((row + 1) * local_tile_size + (local_stitch_size / pow(2, (gradient + 1)) if row < num_rows - 1 else 0))
streg_min_x = int((column + 1) * local_tile_size - local_stitch_size / pow(2, (gradient + 1)))
streg_max_x = int((column + 1) * local_tile_size + local_stitch_size / pow(2, (gradient + 1)))
stitch = np_img[streg_min_y:streg_max_y, streg_min_x:streg_max_x]
kernel_size = 1 + gradient * 2
np_img[streg_min_y:streg_max_y, streg_min_x:streg_max_x] = cv2.GaussianBlur(stitch, (kernel_size, kernel_size), 0)
if tile_size == local_tile_size:
print(">>> Smoothed stitched lines for image",f_name,"=", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"),flush=True)
def generate_tile_compensation_data(np_img, bins, local_tile_size):
tile_data = {}
tile_data['tiles'] = []
tiles = []
num_rows = int(len(np_img) / local_tile_size)
num_columns = int(len(np_img[0]) / local_tile_size)
for row in range(num_rows):
tiles.append([])
tile_data['tiles'].append([])
for column in range(num_columns):
tiles[row].append(np_img[(row * local_tile_size):((row + 1) * local_tile_size), (column * local_tile_size):((column + 1) * local_tile_size)])
tile_data['tiles'][row].append([])
for tile_row in range(len(tiles)):
for tile_column in range(len(tiles[tile_row])):
tile = tiles[tile_row][tile_column]
bin_count = np.histogram(np.ravel(tile), bins)[0]
values = tile[np.nonzero(tile)]
values = values[values >= bins[bin_min]]
values = values[values <= bins[bin_max]]
curr_subtile_data = {}
curr_subtile_data['row'] = tile_row
curr_subtile_data['column'] = tile_column
curr_subtile_data['samples'] = bin_count[bin_max]
if (curr_subtile_data['samples'] == 0):
curr_subtile_data['mean'] = 0
curr_subtile_data['deviation'] = 0
else:
curr_subtile_data['mean'] = np.mean(values)
curr_subtile_data['deviation'] = np.std(values)
tile_data['tiles'][tile_row][tile_column] = curr_subtile_data
for row in tile_data['tiles']:
for curr_data in row:
if curr_data['samples'] == 0:
continue
if not 'chosen' in tile_data:
tile_data['chosen'] = curr_data
else:
if curr_data['samples'] > tile_data['chosen']['samples']:
tile_data['chosen'] = curr_data
if tile_size == local_tile_size:
print(">>> Calculated reference tiles balance =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
return tile_data
def rescale_gradient_intensity(intensity, ratio):
return min(max(0, intensity * ratio), 1.0)
def apply_tile_gradient_compensation(f_name, np_img, bins, gradient_data):
num_rows = int(len(np_img) / tile_size)
num_columns = int(len(np_img[0]) / tile_size)
kernel_size = int(tile_size / light_gradient)
for row in range(num_rows):
for column in range(num_columns):
tile_ratio = gradient_data[row][column]['ratio_gradient']
if tile_ratio > 0:
for row_kernel in range(light_gradient):
for column_kernel in range(light_gradient):
kernel_ratio = gradient_data[row][column]['kernels'][row_kernel][column_kernel]['ratio_gradient']
if kernel_ratio > 0 and kernel_ratio < tile_ratio:
tile_kernel_sy = row * tile_size + row_kernel * kernel_size
tile_kernel_sx = column * tile_size + column_kernel * kernel_size
final_ratio = 1 + (bins[bin_max] * (tile_ratio / kernel_ratio)) / bins[bin_max]
for i1 in range(kernel_size):
for i2 in range(kernel_size):
np_img[tile_kernel_sy + i1][tile_kernel_sx + i2] = rescale_gradient_intensity(np_img[tile_kernel_sy + i1][tile_kernel_sx + i2], final_ratio)
tile = np_img[(row * tile_size):((row + 1) * tile_size), (column * tile_size):((column + 1) * tile_size)]
subtile_data = generate_tile_compensation_data(tile, bins, kernel_size)
apply_tile_compensation('', tile, bins, subtile_data, kernel_size, kernel_size / 10)
imsave(os.path.join(data_folder, "preprocessed", os.path.splitext(file)[0] + "_gradient.jpg"), np.uint8(np_img * 255))
print(">>> Applied gradient fix for image",f_name,"=", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"),flush=True)
def generate_tile_gradient_data(np_img, bins, tile_size):
num_rows = int(len(np_img) / tile_size)
num_columns = int(len(np_img[0]) / tile_size)
kernel_size = int(tile_size / light_gradient)
gradient_data = []
for row in range(num_rows):
gradient_data.append([])
for column in range(num_columns):
gradient_data[row].append([])
tile_gradient = {}
tile_gradient_data = []
max_gradient = 0
ratio_gradient = 0
max_gradient_kernel = [0, 0]
for row_kernel in range(light_gradient):
tile_gradient_data.append([])
for column_kernel in range(light_gradient):
tile_kernel_sy = row * tile_size + row_kernel * kernel_size
tile_kernel_sx = column * tile_size + column_kernel * kernel_size
tile_kernel_ey = kernel_size + (tile_size % light_gradient) if row_kernel == light_gradient - 1 else 0
tile_kernel_ex = kernel_size + (tile_size % light_gradient) if column_kernel == light_gradient - 1 else 0
tile_kernel = np_img[tile_kernel_sy:(tile_kernel_sy + tile_kernel_ey), tile_kernel_sx:(tile_kernel_sx + tile_kernel_ex)]
bin_count = np.histogram(np.ravel(tile_kernel), bins)[0]
samples = bin_count[bin_min] + bin_count[bin_max]
top_samples = bin_count[bin_max]
middle_samples = bin_count[bin_min]
tile_gradient_info = {}
tile_gradient_info['bins'] = bin_count
if top_samples > 0:
tile_gradient_info['ratio_gradient'] = max(0.01, top_samples / middle_samples) if middle_samples > 0 else 1
elif middle_samples > 0:
tile_gradient_info['ratio_gradient'] = 0.01
else:
samples = 1
tile_gradient_info['ratio_gradient'] = -1
tile_gradient_data[row_kernel].append(tile_gradient_info)
if max_gradient == 0 or tile_gradient_info['ratio_gradient'] > 0 and max_gradient < tile_gradient_info['ratio_gradient'] * math.log(samples):
max_gradient = tile_gradient_info['ratio_gradient'] * math.log(samples)
ratio_gradient = tile_gradient_info['ratio_gradient']
max_gradient_kernel = [row_kernel, column_kernel]
tile_gradient['kernels'] = tile_gradient_data
tile_gradient['max_gradient'] = max_gradient
tile_gradient['ratio_gradient'] = ratio_gradient
tile_gradient['max_gradient_kernel'] = max_gradient_kernel
gradient_data[row][column] = tile_gradient
print(">>> Calculated reference tiles gradient =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
return gradient_data
def apply_thresholds(marker, np_img, threshold_min, threshold_max):
if threshold_min > 0:
np_thres = np_img.copy()
np_thres[np_thres >= threshold_min] = 0
imsave(os.path.join(data_folder, "preprocessed", marker + "_threshold_bottom.jpg"), np.uint8(np_thres * 255))
del np_thres
np_img[np_img < threshold_min] = 0
if threshold_max < 1:
np_thres = np_img.copy()
np_thres[np_img <= threshold_max] = 0
imsave(os.path.join(data_folder, "preprocessed", marker + "_threshold_top.jpg"), np.uint8(np_thres * 255))
del np_thres
np_img[np_img > threshold_max] = 0
print(">>> Applied min and max thresholds =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
def preprocess_image(marker, marker_img):
print(">>> Preprocessing",marker,"start =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
#normalizing images
np_img = (marker_img - np.amin(marker_img)) / (np.amax(marker_img) - np.amin(marker_img))
apply_thresholds(marker, np_img, thres_min, thres_max)
global otsu_threshold_levels
if otsu_threshold_levels >=0:
final_c_otsu = []
if otsu_threshold_levels == 0:
c_otsu = threshold_multiotsu(np_img, 3)
final_c_otsu = c_otsu.copy()
c_otsu = np.insert(c_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=c_otsu)
regions = np.reshape(np.array([c_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_3.jpg"), np.uint8(regions * 255))
c_otsu = threshold_multiotsu(np_img, 4)
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [2])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_4_1-2.jpg"), np.uint8(regions * 255))
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [1])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_4_1-3.jpg"),
np.uint8(regions * 255))
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [0])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_4_2-3.jpg"), np.uint8(regions * 255))
c_otsu = threshold_multiotsu(np_img, 5)
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [2, 3])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_5_1-2.jpg"), np.uint8(regions * 255))
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [1, 3])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_5_1-3.jpg"), np.uint8(regions * 255))
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [1, 2])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_5_1-4.jpg"), np.uint8(regions * 255))
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [0, 3])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_5_2-3.jpg"), np.uint8(regions * 255))
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [0, 2])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_5_2-4.jpg"), np.uint8(regions * 255))
temp_otsu = c_otsu.copy()
temp_otsu = np.delete(temp_otsu, [0, 1])
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu_5_3-4.jpg"), np.uint8(regions * 255))
else:
final_c_otsu = threshold_multiotsu(np_img, otsu_threshold_levels)
temp_otsu = final_c_otsu.copy()
delete_intervals = []
if bin_min > 1:
delete_intervals = range(0, bin_min - 1)
if bin_max < otsu_threshold_levels - 1:
delete_intervals.extend(range(bin_max, otsu_threshold_levels - 1))
temp_otsu = np.delete(temp_otsu, delete_intervals)
temp_otsu = np.insert(temp_otsu, 0, 0.0)
regions = np.digitize(np_img, bins=temp_otsu)
regions = np.reshape(np.array([temp_otsu[x - 1] for x in np.ravel(regions)]), (len(np_img), len(np_img[0])))
imsave(os.path.join(data_folder, "preprocessed", marker + "_otsu.jpg"), np.uint8(regions * 255))
np_img[np_img < final_c_otsu[bin_min]] = 0
if flatten_spots == "yes":
np_img[np_img > final_c_otsu[bin_max]] = final_c_otsu[bin_max]
print(">>> Otsu thresholded result image calculated =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
if balance_tiles == "yes":
final_c_otsu = np.insert(final_c_otsu, 0, 0.0)
if light_gradient > 1:
gradient_data = generate_tile_gradient_data(np_img, final_c_otsu, tile_size)
apply_tile_gradient_compensation(marker, np_img, final_c_otsu, gradient_data)
np.nan_to_num(np_img, copy=False)
tile_data = generate_tile_compensation_data(np_img, final_c_otsu, tile_size)
apply_tile_compensation(marker, np_img, final_c_otsu, tile_data, tile_size, stitch_size)
if exposure != 1.0:
np_img = np.reshape(np.array([(x * exposure) for x in np.ravel(np_img)]), (len(np_img), len(np_img[0])))
np_img = np.clip(np_img, 0.0, 1.0)
print(">>> Exposure calculated =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
imsave(os.path.join(data_folder, "preprocessed", marker + ".tif"), np.uint16(np_img * 65535))
print(">>> Preprocessed result image",marker + ".tif","saved =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
#Function to handle the command line parameters passed
def options(argv):
if len(argv) == 0:
print ('preprocessing.py arguments:\n\t-data=<optional /path/to/images/folder, defaults to \'./data\'> : example -> -data=/lab/projectX/images\n\t-preprocess_markers=<optional, list of present specific markers to preprocess> : example -> -preprocess_markers=DAPI,CTNNB1,AMY2A,SST\n\t-threshold_min=<number, percentage of intensity> : example -> -threshold_min=1\n\t-threshold_max=<number, percentage of intensity> : example -> -threshold_max=99\n\t-otsu_threshold_levels=<otsu classes, i.e 3 OR otsu classes and specific bin filtering, i.e 5:1:2> : example -> -otsu_threshold_levels=3\n\t-flatten_spots=<yes or no> : example -> -flatten_spots=no\n\t-tile_size=<number of pixels> : example -> -tile_size=1844\n\t-light_gradient=<number> : example -> -light_gradient=3\n\t-balance_tiles=<yes or no> : example -> -balance_tiles=yes\n\t-stitch_size=<number of pixels> : example -> -stitch_size=20\n\t-exposure=<number, percentage of the base intensity> : example -> -exposure=300', flush=True)
sys.exit()
else:
for arg in argv:
if arg.startswith('-help'):
print ('preprocessing.py arguments:\n\t-data=<optional /path/to/images/folder, defaults to \'./data\'> : example -> -data=/lab/projectX/images\n\t-preprocess_markers=<optional, list of present specific markers to preprocess> : example -> -preprocess_markers=DAPI,CTNNB1,AMY2A,SST\n\t-threshold_min=<number, percentage of intensity> : example -> -threshold_min=1\n\t-threshold_max=<number, percentage of intensity> : example -> -threshold_max=99\n\t-otsu_threshold_levels=<otsu classes, i.e 3 OR otsu classes and specific bin filtering, i.e 5:1:2> : example -> -otsu_threshold_levels=3\n\t-flatten_spots=<yes or no> : example -> -flatten_spots=no\n\t-tile_size=<number of pixels> : example -> -tile_size=1844\n\t-light_gradient=<number> : example -> -light_gradient=3\n\t-balance_tiles=<yes or no> : example -> -balance_tiles=yes\n\t-stitch_size=<number of pixels> : example -> -stitch_size=20\n\t-exposure=<number, percentage of the base intensity> : example -> -exposure=300', flush=True)
sys.exit()
elif arg.startswith('-data='):
global data_folder
data_folder = arg[6:]
elif arg.startswith('-preprocess_markers='):
global preprocess_markers
preprocess_markers = [x.strip() for x in arg[20:].split(",")]
elif arg.startswith('-threshold_min='):
global thres_min
thres_min = float(arg[15:]) / 100
elif arg.startswith('-threshold_max='):
global thres_max
thres_max = float(arg[15:]) / 100
elif arg.startswith('-otsu_threshold_levels='):
global otsu_threshold_levels
global bin_min
global bin_max
par_otl = arg[23:]
if par_otl != "":
if ":" in par_otl:
otsu_threshold_levels = int(par_otl.split(":")[0])
bin_min = int(par_otl.split(":")[1])
bin_max = int(par_otl.split(":")[2])
else:
otsu_threshold_levels = int(par_otl)
bin_max = otsu_threshold_levels - 1
elif arg.startswith('-flatten_spots='):
global flatten_spots
flatten_spots = arg[15:]
elif arg.startswith('-tile_size='):
global tile_size
tile_size = int(arg[11:])
elif arg.startswith('-light_gradient='):
global light_gradient
light_gradient = 2 ** int(arg[16:])
elif arg.startswith('-balance_tiles='):
global balance_tiles
balance_tiles = arg[15:]
elif arg.startswith('-stitch_size='):
global stitch_size
stitch_size = int(arg[13:])
elif arg.startswith('-exposure='):
global exposure
exposure = int(arg[10:]) / 100
if __name__ =='__main__':
options(sys.argv[1:])
pidfile_filename = './RUNNING'
if "PIPEX_WORK" in os.environ:
pidfile_filename = './work/RUNNING'
with open(pidfile_filename, 'w', encoding='utf-8') as f:
f.write(str(os.getpid()))
f.close()
with open(os.path.join(data_folder, 'log_settings_preprocessing.txt'), 'w+', encoding='utf-8') as f:
f.write(">>> Start time preprocessing = " + datetime.datetime.now().strftime(" %H:%M:%S_%d/%m/%Y") + "\n")
f.write(' '.join(sys.argv))
f.close()
print(">>> Start time preprocessing =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
try:
os.mkdir(os.path.join(data_folder, 'preprocessed'))
except OSError as error:
print('>>> preprocessed folder already exists, overwriting results', flush=True)
for file in os.listdir(data_folder):
file_path = os.path.join(data_folder, file)
if os.path.isdir(file_path):
continue
next_try = False
try:
with TiffFile(file_path) as tif:
if len(tif.series[0].pages) == 1:
for marker in preprocess_markers:
if marker + '.' in file:
preprocess_image(marker, downscale_images(next(iter(tif.series[0].pages)).asarray()))
upscale_results(marker)
break
else:
#Akoya's qptiff
for page in tif.series[0].pages:
biomarker = ElementTree.fromstring(page.description).find('Biomarker').text
if biomarker in preprocess_markers:
preprocess_image(biomarker, downscale_images(page.asarray()))
upscale_results(marker)
except Exception as e:
print('>>> checking type of ' + file_path + ', not QPTIFF', flush=True)
print('>>> ', e, flush=True)
next_try = True
if next_try:
try:
for marker in preprocess_markers:
if marker + '.' in file:
curr_image = np.array(PIL.Image.open(file_path))
if len(curr_image.shape) > 2:
curr_image = curr_image[:, :, 0]
preprocess_image(marker, downscale_images(curr_image))
upscale_results(marker)
break
except Exception as e:
print('>>> Could not read image ' + file_path, flush=True)
print('>>> ', e, flush=True)
print(">>> End time preprocessing =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)