-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_tissuumaps.py
executable file
·193 lines (179 loc) · 9.21 KB
/
generate_tissuumaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import scanpy as sc
import scipy
import os
import json
import datetime
import sys
from skimage.measure import approximate_polygon
import numpy as np
data_folder = os.environ.get('PIPEX_DATA')
include_marker_images = "no"
include_geojson = "no"
compress_geojson = "no"
include_html = "no"
def exporting_tissuumaps ():
# Check if the required files are present
global include_geojson
if include_marker_images == "no" and include_geojson == "yes":
print(">>> Impossible to display geojson without a background image", flush=True)
include_geojson = "no"
if include_geojson == "yes":
if not os.path.exists(os.path.join(data_folder, 'analysis', 'cell_segmentation_geo.json')):
print(">>> Impossible to display geojson without a cell segmentation file", flush=True)
include_geojson = "no"
adata = sc.read_h5ad(os.path.join(data_folder, 'analysis/downstream/anndata.h5ad'))
# Make sure that the X matrix is in the compressed sparse column (CSC) format (required by TissUUmaps)
adata.X = scipy.sparse.csc_matrix(adata.X)
# Add image layers and cell segmentation geoJSON file to the AnnData object:
if include_marker_images == "yes":
markers = adata.var_names
elif include_marker_images == "no":
markers = []
else:
markers = include_marker_images.split(",")
if include_geojson == "yes" and include_marker_images != "no":
if compress_geojson == "yes":
import geobuf
# load os.path.join(data_folder, 'analysis/cell_segmentation_geo.json') as json
with open(os.path.join(data_folder, 'analysis', 'cell_segmentation_geo.json'), 'r') as f:
geojson_data = json.load(f)
# Remove measurements from geojson_data[i].properties.measurements
for f in geojson_data:
if "measurements" in f["properties"]:
del f["properties"]["measurements"]
# Approximate region boundaries to reduce file size:
geojson_data_approx = []
for f in geojson_data:
f_approx = f.copy()
for i in range(len(f["geometry"]["coordinates"])):
f_approx["geometry"]["coordinates"][i] = approximate_polygon(np.array(f["geometry"]["coordinates"][i]), tolerance=0.75).tolist()
geojson_data_approx.append(f_approx)
geojson_data_approx = {
"type":"FeatureCollection",
"features":geojson_data_approx
}
# Save as a compressed protobuf file in the geobuf format:
pbf = geobuf.encode(geojson_data_approx, 3) # TissUUmaps uses a precision of 3 decimal
# We need to add a tag to indicate the precision
data = geobuf.geobuf_pb2.Data()
data.ParseFromString(pbf)
data.precision = 3
pbf = data.SerializeToString()
cell_segmentation_path = "../cell_segmentation_geo.pbf"
with open(os.path.join(data_folder, 'analysis', 'cell_segmentation_geo.pbf'), 'wb') as f:
f.write(pbf)
else:
cell_segmentation_path = "../cell_segmentation_geo.json"
regionFiles = [
{
"name": "Cell segmentation",
"path": cell_segmentation_path,
"title": "Cell segmentation",
"settings":[
{
"module": "regionUtils",
"function": "_regionStrokeWidth",
"value": "0.5"
},
{
"module": "regionUtils",
"function": "_regionStrokeAdaptOnZoom",
"value": True
},
{
"module": "glUtils",
"function": "_regionShowOnTop",
"value": False
}
]
}
]
else:
regionFiles = []
adata.uns["tmap"] = json.dumps({
"layers": [
{
"name": f"{marker}",
"tileSource": f"../../{marker}.tif.dzi"
}
for marker in markers
],
"regionFiles": regionFiles,
"plugins": ["Feature_Space","InteractionQC","Spot_Inspector"],
"settings": [
{
"module": "pluginUtils",
"function": "startPlugin",
"value": ["Spot_Inspector",
[
{"name": "_layer_format", "value":"{layout-row6}"},
{"name": "_cmap", "value":"undefined"},
],False]
},
{
"module": "pluginUtils",
"function": "startPlugin",
"value": ["InteractionQC",[],False]
},
{
"module": "pluginUtils",
"function": "startPlugin",
"value": ["Feature_Space",[],False]
}
],
})
adata.write_h5ad(os.path.join(data_folder, 'analysis', 'downstream', 'anndata_TissUUmaps.h5ad'))
if include_html == "yes":
import tissuumaps
state = tissuumaps.read_h5ad.h5ad_to_tmap("", os.path.join(data_folder, 'analysis', 'downstream', 'anndata_TissUUmaps.h5ad'))
tissuumaps.views.exportToStatic(
json.dumps(state),
os.path.join(data_folder, 'analysis', 'downstream', 'TissUUmaps_webexport'),
os.path.join(data_folder, 'analysis', 'downstream')
)
from urllib.request import urlretrieve
for plugin in ["Feature_Space","InteractionQC","Spot_Inspector"]:
url = f"https://tissuumaps.github.io/TissUUmaps/plugins/latest/{plugin}.js"
filename = os.path.join(data_folder, 'analysis', 'downstream', 'TissUUmaps_webexport', 'plugins', f"{plugin}.js")
os.makedirs(os.path.dirname(filename), exist_ok=True)
urlretrieve(url, filename)
#Function to handle the command line parameters passed
def options(argv):
if (len(argv) == 0):
print('export_tissuumaps.py arguments:\n\t-data=<optional /path/to/images/folder, defaults to /home/pipex/data> : example -> -data=/lab/projectX/images\n\t-include_marker_images=<yes or no or list of present specific markers to display as image layers> : example -> -include_marker_images=DAPI,SST,GORASP2\n\t-include_geojson=<yes or no to include cell segmentation as regions> : example -> -include_geojson=yes\n\t-compress_geojson=<yes or no to compress geojson regions into pbf> : example -> -compress_geojson=yes\n\t-include_html=<yes or no to export html page for sharing the TissUUmaps project on the web> : example -> -include_marker_images=yes', flush=True)
sys.exit()
else:
for arg in argv:
if arg.startswith('-help'):
print('export_tissuumaps.py arguments:\n\t-data=<optional /path/to/images/folder, defaults to /home/pipex/data> : example -> -data=/lab/projectX/images\n\t-include_marker_images=<yes or no or list of present specific markers to display as image layers> : example -> -include_marker_images=DAPI,SST,GORASP2\n\t-include_geojson=<yes or no to include cell segmentation as regions> : example -> -include_geojson=yes\n\t-compress_geojson=<yes or no to compress geojson regions into pbf> : example -> -compress_geojson=yes\n\t-include_html=<yes or no to export html page for sharing the TissUUmaps project on the web> : example -> -include_marker_images=yes', flush=True)
sys.exit()
elif arg.startswith('-data='):
global data_folder
data_folder = arg[6:]
elif arg.startswith('-include_marker_images='):
global include_marker_images
include_marker_images = arg[23:]
elif arg.startswith('-include_geojson='):
global include_geojson
include_geojson = arg[17:]
elif arg.startswith('-compress_geojson='):
global compress_geojson
compress_geojson = arg[18:]
elif arg.startswith('-include_html='):
global include_html
include_html = arg[14:]
if __name__ =='__main__':
options(sys.argv[1:])
pidfile_filename = './RUNNING'
if "PIPEX_WORK" in os.environ:
pidfile_filename = './work/RUNNING'
with open(pidfile_filename, 'w', encoding='utf-8') as f:
f.write(str(os.getpid()))
f.close()
with open(os.path.join(data_folder, 'log_settings_tissuumaps.txt'), 'w+', encoding='utf-8') as f:
f.write(">>> Start time tissuumaps = " + datetime.datetime.now().strftime(" %H:%M:%S_%d/%m/%Y") + "\n")
f.write(' '.join(sys.argv))
f.close()
print(">>> Start time exporting tissuumaps =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)
exporting_tissuumaps()
print(">>> End time exporting tissuumaps =", datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S"), flush=True)