forked from mmabadal/object_detection_utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathput_xls_together.py
54 lines (33 loc) · 1.44 KB
/
put_xls_together.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import glob
import os
import pandas as pd
import numpy as np
def main():
results_csvs = glob.glob("/mnt/c/Users/haddo/Halimeda/merge/test/merged_weights_yolo_sizes/**/weighted_merge/metrics/*.xlsx")
# Example: /mnt/c/Users/haddo/Halimeda/merge/test/merged_weights_yolo_sizes/yolo_XL/weighted_merge/metrics/metrics.xlsx
rows_data_list = []
rows_name_list = []
print("CSVS:", results_csvs)
for i, csv in enumerate(results_csvs):
columns_name_list = list()
excel = pd.ExcelFile(csv, engine='openpyxl')
sheets = excel.sheet_names
data = excel.parse(sheets[0])
for i in range(data.shape[1]):
columns_name_list.append(str(data.columns[i]))
data = pd.DataFrame(data, columns=columns_name_list)
data_np = data.to_numpy()
rows_name_list.append(csv)
for i in range(data_np.shape[0]-1):
rows_name_list.append(None)
rows_name_list.append('')
rows_data_list.append(data_np)
rows_data = np.vstack(rows_data_list)
df = pd.DataFrame(data=rows_data, index=rows_name_list, columns=columns_name_list)
path_out = "/path/to/output/directory"
lookfor = "filename_prefix_"
filepath = os.path.join(path_out, lookfor + "thr_unified.xlsx")
df.to_excel(filepath, index=True)
if __name__ == '__main__':
main()
#-----------------------------------------