-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_blackbox.py
executable file
·167 lines (128 loc) · 5.68 KB
/
main_blackbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# /usr/bin/env python
import vidmodex
from vidmodex.models import ViViT
from vidmodex.models import MoViNet
from vidmodex.models import SwinT
from vidmodex.generator import Tgan
import vidmodex.config_args
from vidmodex.train import train_datafree
def blackbox_main(data_config):
config_args.query_budget *= 10 ** 6
config_args.query_budget = int(config_args.query_budget)
if config_args.MAZE:
print("\n" * 2)
print("#### /!\ OVERWRITING ALL PARAMETERS FOR MAZE REPLCIATION ####")
print("\n" * 2)
config_args.scheduer = "cosine"
config_args.loss = "kl"
config_args.batch_size = 16
config_args.g_iter = 1
config_args.d_iter = 5
config_args.grad_m = 10
config_args.lr_G = 1e-4
config_args.lr_S = 1
pprint(config_args, width=80)
print(config_args.log_dir)
os.makedirs(config_args.log_dir, exist_ok=True)
if config_args.store_checkpoints:
os.makedirs(config_args.log_dir + "/checkpoint", exist_ok=True)
use_cuda = not config_args.no_cuda and torch.cuda.is_available()
torch.manual_seed(config_args.seed)
torch.cuda.manual_seed(config_args.seed)
np.random.seed(config_args.seed)
random.seed(config_args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda:%d" % config_args.device if use_cuda else "cpu")
kwconfig_args = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
global file
model_dir = "checkpoint/student_{}".format(config_args.model_id)
config_args.model_dir = model_dir
if (not os.path.exists(model_dir)):
os.makedirs(model_dir)
file = open("{}/logs.txt".format(config_args.model_dir), "w")
print(config_args)
config_args.device = device
config_args.normalization_coefs = None
config_args.G_activation = torch.tanh
config_args.num_classes = data_config["num_classes"]
teacher = Victim()
teacher.load_state_dict(torch.load(
data_config["teacher_weight"],
map_location=device))
teacher.cuda()
teacher.eval()
teacher = teacher.to(device)
print("\n\t\tTraining with {config_args.model} as a Target\n".format)
correct = 0
student = Student(224, 16, data_config["num_classes"], 16)
generator = Generator().cuda()
generator = generator.to(device)
config_args.generator = generator
config_args.student = student
config_args.teacher = teacher
config_args.cost_per_iteration = config_args.batch_size * \
(config_args.g_iter * (config_args.grad_m + 1) + config_args.d_iter)
number_epochs = config_args.query_budget // (
config_args.cost_per_iteration * config_args.epoch_itrs) + 1
print("\nTotal budget:", {config_args.query_budget // 1000}, "k")
print("Cost per iterations: ", config_args.cost_per_iteration)
print("Total number of epochs: ", number_epochs)
optimizer_S = optim.SGD(student.parameters(
), lr=config_args.lr_S, weight_decay=config_args.weight_decay, momentum=0.9)
if config_args.MAZE:
optimizer_G = optim.SGD(generator.parameters(
), lr=config_args.lr_G, weight_decay=config_args.weight_decay, momentum=0.9)
else:
optimizer_G = optim.Adam(generator.parameters(), lr=config_args.lr_G)
steps = sorted([int(step * number_epochs) for step in config_args.steps])
print("Learning rate scheduling at steps: ", steps)
if config_args.scheduler == "multistep":
scheduler_S = optim.lr_scheduler.MultiStepLR(
optimizer_S, steps, config_args.scale)
scheduler_G = optim.lr_scheduler.MultiStepLR(
optimizer_G, steps, config_args.scale)
elif config_args.scheduler == "cosine":
scheduler_S = optim.lr_scheduler.CosineAnnealingLR(
optimizer_S, number_epochs)
scheduler_G = optim.lr_scheduler.CosineAnnealingLR(
optimizer_G, number_epochs)
best_acc = 0
acc_list = []
writer = SummaryWriter(f"runs/BB")
step = 0
for epoch in range(1, number_epochs + 1):
if config_args.scheduler != "none":
scheduler_S.step()
scheduler_G.step()
loss_S, loss_G = train_datafree(config_args, teacher=teacher, student=student, generator=generator,
device=device, optimizer=[optimizer_S, optimizer_G], epoch=epoch)
writer.add_scalar("Loss Student", loss_S, global_step=step)
writer.add_scalar("Loss Generator", loss_G, global_step=step)
acc, test_loss = test(config_args, student=student, generator=generator,
device=device, test_loader=test_loader, epoch=epoch)
acc_list.append(acc)
if acc > best_acc:
best_acc = acc
name = 'swinT'
torch.save(student.state_dict(
), f"checkpoint/student_kinetics-{name}.pth")
torch.save(generator.state_dict(
), f"checkpoint/student_kinetics-generator.pth")
if config_args.store_checkpoints:
torch.save(student.state_dict(), config_args.log_dir +
f"/checkpoint/student.pth")
torch.save(generator.state_dict(), config_args.log_dir +
f"/checkpoint/generator.pth")
writer.add_scalar("Testing Acc", acc, global_step=step)
writer.add_scalar("Testing Loss", test_loss, global_step=step)
step += 1
print("Best Acc=%.6f" % best_acc)
if __name__ == "__main__":
Victim = SwinT
Student = ViViT
Generator = Tgan
#ToDo: Add ABSL for all the config args
custom_config = {}
custom_config["num_classes"] = 400
blackbox_main(custom_config)