-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeepphylo_classification_multi_label.py
159 lines (147 loc) · 7.04 KB
/
deepphylo_classification_multi_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from deepphylo.pre_dataset import set_seed,reducer, inverse_C, DeepPhyDataset
from deepphylo.plot import plot_ss_curve, plot_pr_curve
from deepphylo.evaluate import compute_metrics_multi_label, select_best_epoch
from deepphylo.model import DeepPhylo_classification_multi_label
import argparse
def train(X_train, Y_train, X_eval, Y_eval, phy_embedding):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
hidden_size = args.hidden_size
kernel_size_conv = args.kernel_size_conv
criterion = nn.MSELoss()
batch_size = args.batch_size
kernel_size_pool = args.kernel_size_pool
if args.activation == 'relu':
activation = nn.ReLU()
elif args.activation == 'sigmoid':
activation = nn.Sigmoid()
elif args.activation == 'tanh':
activation = nn.Tanh()
else:
raise ValueError("Invalid activation function")
# Create DataLoader for training and validation data
train_dataset = DeepPhyDataset(phy_embedding, X_train, Y_train)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=train_dataset.custom_collate_fn)
val_dataset = DeepPhyDataset(phy_embedding, X_eval, Y_eval)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, collate_fn=train_dataset.custom_collate_fn)
model = DeepPhylo_classification_multi_label(hidden_size, train_dataset.embeddings, kernel_size_conv, kernel_size_pool, activation=activation).to(device)
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
# Training
epochs = args.epochs
patience = 5
best_val_loss = float("inf")
counter = 0
train_losses = []
val_losses = []
metrics_dict = {'acc': [], 'mcc': [], 'roc_auc': [], 'aupr': [], 'f1': []}
for epoch in range(epochs):
# Training
model.train()
train_loss = 0.0
for batch in train_loader:
batch = {key: val.to(device) for key, val in batch.items()}
optimizer.zero_grad()
y_pred_train = model(batch['X'], batch['nonzero_indices'])
loss_train = criterion(y_pred_train, batch['y'].reshape(-1, 4))
loss_train.backward()
optimizer.step()
train_loss += loss_train.item() * batch['X'].size(0)
train_loss /= len(train_loader.dataset)
# Validation
model.eval()
val_loss = 0.0
val_preds = []
y_val = []
with torch.no_grad():
for batch in val_loader:
y_val.append(batch['y'].numpy())
batch = {key: val.to(device) for key, val in batch.items()}
y_pred_val =model(batch['X'], batch['nonzero_indices'])
loss_val = criterion(y_pred_val, batch['y'].reshape(-1, 4))
val_loss += loss_val.item() * batch['X'].size(0)
val_preds.append(y_pred_val.detach().cpu().numpy())
val_loss /= len(val_loader.dataset)
# Calculate validation R2
y_val = np.concatenate(y_val)
val_preds = np.concatenate(val_preds)
_ , metric_dict_all = compute_metrics_multi_label(y_val, val_preds)
print(f"epoch: {epoch+1}, train_loss: {train_loss:.4f}, val_loss: {val_loss:.4f}, acc: {metric_dict_all['acc']:.4f}, mcc:{metric_dict_all['mcc']:.4}, roc-auc:{metric_dict_all['roc_auc']:.4f}, aupr:{metric_dict_all['aupr']:.4f}")
train_losses.append(train_loss)
val_losses.append(val_loss)
metrics_dict['acc'].append(metric_dict_all['acc'])
metrics_dict['mcc'].append(metric_dict_all['mcc'])
metrics_dict['roc_auc'].append(metric_dict_all['roc_auc'])
metrics_dict['aupr'].append(metric_dict_all['aupr'])
metrics_dict['f1'].append(metric_dict_all['f1'])
# Early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
counter = 0
else:
counter += 1
if counter >= patience:
print("Early stopping")
break
return train_losses, val_losses, metrics_dict
if __name__ == '__main__':
"""
# python3 deepphylo_classification_multi_label.py --epochs 200
# --hs 500 --kec 7 --l 1e-4 --bs 64 --kep 4 --act relu
"""
set_seed(1234)
parser = argparse.ArgumentParser(
description='Command line tool for twin classification')
parser.add_argument('--epochs',
default=200,
type=int,
metavar='N',
help='number of total epochs to run')
parser.add_argument('-hs',
'--hidden_size',
default=32,
type=int,
help='Hidden_size which using in pca dimensionality reduction operation')
parser.add_argument('-kec',
'--kernel_size_conv',
default=5,
type=int,
help='Kernal_size which applied to convolutional layers')
parser.add_argument('-l',
'--lr',
default=5e-2,
type=float,
help='initial learning rate')
parser.add_argument('-bs',
'--batch_size',
default=8,
type=int,
help='Batchsize size when encoding protein embedding with backbone')
parser.add_argument('-kep',
'--kernel_size_pool',
default=1,
type=int,
help='Kernal_size which applied to pooling layers')
parser.add_argument('-act',
'--activation',
default='relu',
choices=['relu', 'sigmoid', 'tanh'],
help='Activation function for encoding protein embedding with backbone (default: relu)')
args = parser.parse_args()
X_train = np.load('data/ggmp_multi_label_classification/X_train.npy')
X_eval = np.load('data/ggmp_multi_label_classification/X_val.npy')
Y_train = np.load('data/ggmp_multi_label_classification/y_train_mets_gastritis_t2dm_gout.npy')
Y_eval = np.load('data/ggmp_multi_label_classification/y_val_mets_gastritis_t2dm_gout.npy')
C = np.load('/data/ggmp_multi_label_classification/distance_matrix.npy')
D = inverse_C(C)
phy_embedding = reducer(C, 'pca', args.hidden_size, whiten=True)
train_losses, val_losses, metrics_dict = train(X_train, Y_train, X_eval, Y_eval, phy_embedding)
best_epoch = select_best_epoch(metrics_dict, ['acc', 'mcc', 'roc_auc', 'aupr'])
print(f"Best epoch:{best_epoch+1}")
print(f"Best metrics: acc: {metrics_dict['acc'][best_epoch]:.4f},mcc: {metrics_dict['mcc'][best_epoch]:.4f}, f1:{metrics_dict['f1'][best_epoch]:.4f},roc_auc: {metrics_dict['roc_auc'][best_epoch]:.4f}, aupr: {metrics_dict['aupr'][best_epoch]:.4f}")