-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot_pruning_nn.py
executable file
·79 lines (70 loc) · 3.14 KB
/
plot_pruning_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env python3
import os
import pickle
import matplotlib.pyplot as plt
import numpy as np
xlabel = 'Number of pruned neurons'
plt.rcParams["font.family"] = "serif"
plt.rcParams['pdf.fonttype'] = 42
for dir_name in ['prune_CAIA_backdoor_15', 'prune_CAIA_backdoor_17']:
print("dir_name", dir_name)
for index, f in enumerate([None] + list(os.listdir(dir_name))):
if index > 0:
path = '%s/%s' % (dir_name, f)
if not f.endswith('.pickle') or not '_nn' in f or not "1.00" in f:
continue
print("path", path)
try:
with open(path, 'rb') as f:
# relSteps, steps, scores, models, scoresbd, mean_activation_per_neuron, concatenated_results = pickle.load(f)
data = list(pickle.load(f))
relSteps = data[0]
scores = data[2]
scoresbd = data[4]
# print("data", data)
# print("scores", scores["Youden"])
# print("scoresbd", scoresbd["Accuracy"])
# print("len(data)", len(data))
if len(data) == 7:
mean_activation_per_neuron = data[5]
concatenated_results = data[6]
elif len(data) == 6:
mean_activation_per_neuron = data[4]
concatenated_results = data[5]
else:
continue
print("Succeeded")
except Exception as e:
print(e)
# print ('Failed to process %s' % path)
# pass
continue
else:
path = '%s/%s' % (dir_name, "idealized ")
TOTAL_NUMBER = 2048
BACKDOOR_PART = 0.25
mean_activation_per_neuron = np.array(([0.0] * (int(TOTAL_NUMBER*BACKDOOR_PART)-1)) + list(np.linspace(0.0, 1.5, num=int(TOTAL_NUMBER*(1-BACKDOOR_PART))+1)))
# print("mean_activations", list(mean_activation_per_neuron))
concatenated_results = np.array(list(np.array([1.0] * int(TOTAL_NUMBER*BACKDOOR_PART)) - np.random.uniform(low=0.0, high=0.1, size=(int(TOTAL_NUMBER*BACKDOOR_PART)))) + list(np.array([0.0] * int(TOTAL_NUMBER*(1-BACKDOOR_PART))) + np.random.uniform(low=-0.05, high=0.05, size=(int(TOTAL_NUMBER*(1-BACKDOOR_PART))))))
# print("concatenated_results", list(concatenated_results-1))
assert len(mean_activation_per_neuron) == len(concatenated_results), f"{len(mean_activation_per_neuron)}, {len(concatenated_results)}"
# plt.figure(figsize=(5,3.5))
plt.figure(figsize=(5,3.75))
tot_neurons = len(mean_activation_per_neuron)
# print("number of neurons", tot_neurons)
sort_indices = np.argsort(mean_activation_per_neuron)
# print("sort_indices", list(sort_indices))
# print("sorted correlations", list(concatenated_results[sort_indices]-1))
lines = []
lines += plt.plot(np.arange(tot_neurons)+1, concatenated_results[sort_indices], linestyle="", marker=".", alpha=0.5)
av_len = 100
lines += plt.plot(np.arange(tot_neurons-av_len+1)+av_len//2, np.convolve(concatenated_results[np.argsort(mean_activation_per_neuron)], np.ones(av_len), mode='valid')/av_len)
plt.xlabel(xlabel)
plt.ylabel('Correlation coefficient')
plt.twinx()
lines += plt.plot(mean_activation_per_neuron[sort_indices], color='gray')
plt.legend(lines, ['Corr. coeff.', 'Corr. coeff., moving avg.', 'Mean activation'], loc='upper right')
plt.ylabel('Mean activation')
plt.tight_layout()
plt.savefig(path[:-7] + '.pdf', bbox_inches = 'tight', pad_inches = 0)
plt.close()