-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconstants.py
76 lines (73 loc) · 2.92 KB
/
constants.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
descriptors_data_folder = {
'cifar10_alexnet_1': 'data/cifar10_1_descriptor',
'cifar10_vgg16_1': 'data/cifar10_1_vgg16_descriptor',
'cifar10_resnet18_1': 'data/cifar10_resnet18_descriptor',
'cifar10_alexnet_2': 'data/cifar10_2_descriptor',
'cifar10_vgg16_2': 'data/cifar10_2_vgg16_descriptor',
'cifar10_alexnet_3': 'data/cifar10_3_descriptor',
'imagenet100_alexnet': 'data/imagenet100_descriptor',
'imagenet100_vgg16': 'data/imagenet100_vgg16_descriptor',
'imagenet100_resnet18': 'data/imagenet100_resnet18_descriptor',
'mirflickr_alexnet': 'data/mirflickr_alexnet_descriptor',
'mirflickr_vgg16': 'data/mirflickr_vgg16_descriptor',
'mirflickr_resnet18': 'data/mirflickr_resnet18_descriptor',
'nuswide_vgg16': 'data/nuswide_vgg16_descriptor',
'coco_alexnet': 'data/coco_descriptor',
'coco_vgg16': 'data/coco_vgg16_descriptor',
'coco_resnet18': 'data/coco_resnet18_descriptor',
'coco_vgg16_pca_128': 'data/coco_vgg16_pca_128_descriptor', # 2 * nbits
'sop_resnet18': 'data/sop_resnet18_descriptor',
'sop_alexnet': 'data/sop_alexnet_descriptor',
'sop_vgg16': 'data/sop_vgg16_descriptor',
# for non one-hot dataset, remember add the dfolder at configs.py:non_onehot_dataset
'sop_instance_resnet18': 'data/sop_instance_resnet18_descriptor',
'sop_instance_alexnet': 'data/sop_instance_alexnet_descriptor',
'sop_instance_vgg16': 'data/sop_instance_vgg16_descriptor',
}
losses = {
'supervised': ['greedyhash', 'jmlh', 'dpn', 'orthocos', 'ce', 'bihalf-supervised', 'orthoarc',
'sdhc', 'csq', 'adsh'],
'pairwise': ['hashnet', 'dbdh', 'dpsh', 'mihash', 'sdh', 'dfh', 'dtsh'],
'unsupervised': ['greedyhash-unsupervised', 'bihalf', 'ssdh'],
'autoencoder': [],
'adversarial': ['tbh'],
'shallow': ['itq', 'pca', 'lsh', 'sh', 'imh'],
'contrastive': ['cibhash']
}
datasets = {
'class': ['imagenet100', 'nuswide', 'cifar10', 'imagenet50a', 'imagenet50b', 'cars', 'cifar10_II', 'landmark',
'landmark200', 'landmark500', 'gldv2delgembed', 'roxford5kdelgembed', 'descriptor', 'sop',
'sop_instance', 'food101'],
'multiclass': ['nuswide', 'coco', 'mirflickr'],
}
supported_model = {
'greedyhash': ['gh'],
'jmlh': ['jmlh'],
'dpn': ['dpn'],
'ce': ['ce'],
'ceq': ['ce'],
'cea': ['ce'],
'orthoarc': ['orthohash'],
'orthocos': ['orthohash'],
'greedyhash-unsupervised': ['norm-unsupervised'],
'bihalf': ['norm-unsupervised'],
'bihalf-supervised': ['ce'],
'sdh': ['ce', 'dpn'],
'sdhc': ['ce'],
'csq': ['dpn'],
'dfh': ['dpn'],
'dbdh': ['dpn', 'single'],
'dpsh': ['dpn'],
'hashnet': ['dpn'],
'dtsh': ['dpn'],
'adsh': ['orthohash'],
'ssdh': ['norm-unsupervised'],
'tbh': ['tbh'],
'pca': ['linear'],
'itq': ['linear'],
'lsh': ['linear'],
'sh': ['linear'],
'imh': ['linear'],
'cibhash': ['cibhash'],
'mihash': ['single', 'dpn']
}