-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_DDPG.py
59 lines (55 loc) · 3.16 KB
/
training_DDPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from training_env import BallbotContinuousBulletEnv
import pandas as pd
import math
import pickle
import gym
import numpy as np
import time
from stable_baselines.results_plotter import load_results, ts2xy
from stable_baselines.ddpg.policies import MlpPolicy, LnMlpPolicy
from stable_baselines.common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise, AdaptiveParamNoiseSpec
from stable_baselines import DDPG
# initialize the environment
env = BallbotContinuousBulletEnv()
# the noise objects for DDPG
n_actions = env.action_space.shape[-1]
param_noise = None
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.3) * np.ones(n_actions))
model = DDPG(LnMlpPolicy, env, param_noise=param_noise, action_noise=action_noise,
actor_lr=1e-4, critic_lr=1e-4, critic_l2_reg=1e-5,
tensorboard_log=".\\outputs_version1\\logs\\")
for i in range(0, 200):
# Count start from 1, not 0
if i == 15:
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.1) * np.ones(n_actions))
model = DDPG.load(".\\outputs_version1\\models\\DDPG_{}".format(i),
env, param_noise=None, action_noise=action_noise,
actor_lr=1e-4, critic_lr=1e-4, critic_l2_reg=1e-5,
tensorboard_log=".\\outputs_version1\\logs\\")
elif i == 30:
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.05) * np.ones(n_actions))
model = DDPG.load(".\\outputs_version1\\models\\DDPG_{}".format(i),
env, param_noise=None, action_noise=action_noise,
actor_lr=1e-4, critic_lr=1e-4, critic_l2_reg=1e-5,
tensorboard_log=".\\outputs_version1\\logs\\")
elif i == 45:
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.03) * np.ones(n_actions))
model = DDPG.load(".\\outputs_version1\\models\\DDPG_{}".format(i),
env, param_noise=None, action_noise=action_noise,
actor_lr=1e-4, critic_lr=1e-4, critic_l2_reg=1e-5,
tensorboard_log=".\\outputs_version1\\logs\\")
elif i == 60:
action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.01) * np.ones(n_actions))
model = DDPG.load(".\\outputs_version1\\models\\DDPG_{}".format(i),
env, param_noise=None, action_noise=action_noise,
actor_lr=1e-4, critic_lr=1e-4, critic_l2_reg=1e-5,
tensorboard_log=".\\outputs_version1\\logs\\")
elif i == 75:
action_noise = None
model = DDPG.load(".\\outputs_version1\\models\\DDPG_{}".format(i),
env, param_noise=None, action_noise=action_noise,
actor_lr=1e-4, critic_lr=1e-4, critic_l2_reg=1e-5,
tensorboard_log=".\\outputs_version1\\logs\\")
model.learn(total_timesteps=10000, tb_log_name="DDPG_{}".format(i + 1), reset_num_timesteps=False)
model.save(".\\outputs_version1\\models\\DDPG_{}".format(i + 1))
time.sleep(1)