forked from IBM/cdfsl-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
executable file
·44 lines (36 loc) · 1.16 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import torch
import numpy as np
def adjust_learning_rate(optimizer, epoch, lr=0.01, step1=30, step2=60, step3=90):
"""Sets the learning rate to the initial LR decayed by 10 every X epochs"""
if epoch >= step3:
lr = lr * 0.001
elif epoch >= step2:
lr = lr * 0.01
elif epoch >= step1:
lr = lr * 0.1
else:
lr = lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def one_hot(y, num_class):
return torch.zeros((len(y), num_class)).scatter_(1, y.unsqueeze(1), 1)
def sparsity(cl_data_file):
class_list = cl_data_file.keys()
cl_sparsity = []
for cl in class_list:
cl_sparsity.append(np.mean([np.sum(x!=0) for x in cl_data_file[cl] ]) )
return np.mean(cl_sparsity)