forked from IBM/cdfsl-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
save_features.py
executable file
·110 lines (83 loc) · 3.8 KB
/
save_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import numpy as np
import torch
from torch.autograd import Variable
import os
import glob
import h5py
import configs
import backbone
from data.datamgr import SimpleDataManager
from methods.baselinetrain import BaselineTrain
from methods.baselinefinetune import BaselineFinetune
from methods.protonet import ProtoNet
from io_utils import model_dict, parse_args, get_resume_file, get_best_file, get_assigned_file
from datasets import ISIC_few_shot, EuroSAT_few_shot, CropDisease_few_shot, Chest_few_shot
def save_features(model, data_loader, outfile):
f = h5py.File(outfile, 'w')
max_count = len(data_loader)*data_loader.batch_size
all_labels = f.create_dataset('all_labels',(max_count,), dtype='i')
all_feats=None
count=0
for i, (x,y) in enumerate(data_loader):
if i%10 == 0:
print('{:d}/{:d}'.format(i, len(data_loader)))
x = x.cuda()
x_var = Variable(x)
feats = model(x_var)
if all_feats is None:
all_feats = f.create_dataset('all_feats', [max_count] + list( feats.size()[1:]) , dtype='f')
all_feats[count:count+feats.size(0)] = feats.data.cpu().numpy()
all_labels[count:count+feats.size(0)] = y.cpu().numpy()
count = count + feats.size(0)
count_var = f.create_dataset('count', (1,), dtype='i')
count_var[0] = count
f.close()
if __name__ == '__main__':
params = parse_args('save_features')
image_size = 224
checkpoint_dir = '%s/checkpoints/%s/%s_%s' %(configs.save_dir, 'miniImageNet', params.model, params.method)
if params.train_aug:
checkpoint_dir += '_aug'
if not params.method in ['baseline'] :
checkpoint_dir += '_%dway_%dshot' %( params.train_n_way, params.n_shot)
print('params.save_iter: ' + str(params.save_iter))
#params.save_iter = 399
if params.save_iter != -1:
modelfile = get_assigned_file(checkpoint_dir, params.save_iter)
elif params.method in ['baseline'] :
modelfile = get_resume_file(checkpoint_dir)
else:
modelfile = get_best_file(checkpoint_dir)
if params.save_iter != -1:
outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), params.dataset + "_" + str(params.save_iter)+ ".hdf5")
else:
outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), params.dataset + ".hdf5")
if params.dataset in ["ISIC"]:
datamgr = ISIC_few_shot.SimpleDataManager(image_size, batch_size = 64)
data_loader = datamgr.get_data_loader(aug = False )
elif params.dataset in ["EuroSAT"]:
datamgr = EuroSAT_few_shot.SimpleDataManager(image_size, batch_size = 64)
data_loader = datamgr.get_data_loader(aug = False )
elif params.dataset in ["CropDisease"]:
datamgr = CropDisease_few_shot.SimpleDataManager(image_size, batch_size = 64)
data_loader = datamgr.get_data_loader(aug = False )
elif params.dataset in ["ChestX"]:
datamgr = Chest_few_shot.SimpleDataManager(image_size, batch_size = 64)
data_loader = datamgr.get_data_loader(aug = False )
model = model_dict[params.model]()
model = model.cuda()
tmp = torch.load(modelfile)
state = tmp['state']
state_keys = list(state.keys())
for i, key in enumerate(state_keys):
if "feature." in key:
newkey = key.replace("feature.","") # an architecture model has attribute 'feature', load architecture feature to backbone by casting name from 'feature.trunk.xx' to 'trunk.xx'
state[newkey] = state.pop(key)
else:
state.pop(key)
model.load_state_dict(state)
model.eval()
dirname = os.path.dirname(outfile)
if not os.path.isdir(dirname):
os.makedirs(dirname)
save_features(model, data_loader, outfile)