-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_net.py
186 lines (158 loc) · 5.28 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
import os
import random
import numpy as np
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from lib.config import cfg
from lib.data import build_data_loader
from lib.engine.trainer import do_train
from lib.models.model import build_model
from lib.solver import make_lr_scheduler, make_optimizer
from lib.utils.checkpoint import Checkpointer
from lib.utils.comm import get_rank, synchronize
from lib.utils.directory import makedir
from lib.utils.logger import setup_logger
from lib.utils.metric_logger import MetricLogger, TensorboardLogger
def set_random_seed(random_seed=0):
if random_seed == -1:
random_seed = np.random.randint(100000)
print("RANDOM SEED: {}".format(random_seed))
random.seed(random_seed)
torch.manual_seed(random_seed)
torch.cuda.manual_seed_all(random_seed)
np.random.seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return random_seed
def train(cfg, output_dir, local_rank, distributed, resume_from, use_tensorboard):
data_loader = build_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
)
data_loader_val = build_data_loader(
cfg,
is_train=False,
is_distributed=distributed,
)
model = build_model(cfg)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[local_rank],
output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,
)
arguments = {}
arguments["iteration"] = 0
arguments["epoch"] = 0
save_to_disk = get_rank() == 0
checkpointer = Checkpointer(model, optimizer, scheduler, output_dir, save_to_disk)
if cfg.MODEL.WEIGHT != "imagenet":
if os.path.isfile(cfg.MODEL.WEIGHT):
checkpointer.load(cfg.MODEL.WEIGHT, cfg.MODEL.EXCEPT_KEYS)
else:
raise IOError("{} is not a checkpoint file".format(cfg.MODEL.WEIGHT))
if resume_from:
if os.path.isfile(resume_from):
extra_checkpoint_data = checkpointer.resume(resume_from)
arguments.update(extra_checkpoint_data)
else:
raise IOError("{} is not a checkpoint file".format(resume_from))
if use_tensorboard:
meters = TensorboardLogger(
log_dir=os.path.join(output_dir, "tensorboard"),
start_iter=arguments["iteration"],
delimiter=" ",
)
else:
meters = MetricLogger(delimiter=" ")
arguments["log_period"] = cfg.SOLVER.LOG_PERIOD
arguments["checkpoint_period"] = cfg.SOLVER.CHECKPOINT_PERIOD
arguments["evaluate_period"] = cfg.SOLVER.EVALUATE_PERIOD
arguments["max_epoch"] = cfg.SOLVER.NUM_EPOCHS
arguments["gen_evaluate_mode"] = cfg.SOLVER.GEN_EVALUATE_MODE
arguments["distributed"] = distributed
do_train(
model,
data_loader,
data_loader_val,
optimizer,
scheduler,
checkpointer,
meters,
device,
arguments,
)
def main():
parser = argparse.ArgumentParser(description="PyTorch Person Search Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--resume-from",
help="the checkpoint file to resume from",
type=str,
)
parser.add_argument(
"--local_rank",
default=0,
type=int,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
parser.add_argument(
"--use-tensorboard",
dest="use_tensorboard",
help="Use tensorboardX logger (Requires tensorboardX and tensorflow installed)",
action="store_true",
default=False,
)
parser.add_argument("--random_seed", type=int, default=0, help="Random seed value")
args = parser.parse_args()
set_random_seed(args.random_seed)
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = os.path.join("./output", args.config_file[8:-5])
makedir(output_dir)
logger = setup_logger("CompFashion", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
train(
cfg,
output_dir,
args.local_rank,
args.distributed,
args.resume_from,
args.use_tensorboard,
)
if __name__ == "__main__":
main()