forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSFMExampleExpressions_bal.cpp
115 lines (95 loc) · 3.85 KB
/
SFMExampleExpressions_bal.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SFMExampleExpressions_bal.cpp
* @brief A structure-from-motion example done with Expressions
* @author Frank Dellaert
* @date January 2015
*/
/**
* This is the Expression version of SFMExample
* See detailed description of headers there, this focuses on explaining the AD part
*/
// The two new headers that allow using our Automatic Differentiation Expression framework
#include <gtsam/slam/expressions.h>
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
// Header order is close to far
#include <gtsam/sfm/SfmData.h> // for loading BAL datasets !
#include <gtsam/slam/dataset.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/inference/Symbol.h>
#include <boost/format.hpp>
#include <vector>
using namespace std;
using namespace gtsam;
using namespace noiseModel;
using symbol_shorthand::C;
using symbol_shorthand::P;
// An SfmCamera is defined in datase.h as a camera with unknown Cal3Bundler calibration
// and has a total of 9 free parameters
int main(int argc, char* argv[]) {
// Find default file, but if an argument is given, try loading a file
string filename = findExampleDataFile("dubrovnik-3-7-pre");
if (argc > 1) filename = string(argv[1]);
// Load the SfM data from file
SfmData mydata = SfmData::FromBalFile(filename);
cout << boost::format("read %1% tracks on %2% cameras\n") %
mydata.numberTracks() % mydata.numberCameras();
// Create a factor graph
ExpressionFactorGraph graph;
// Here we don't use a PriorFactor but directly the ExpressionFactor class
// First, we create an expression to the pose from the first camera
Expression<SfmCamera> camera0_(C(0));
// Then, to get its pose:
Pose3_ pose0_(&SfmCamera::getPose, camera0_);
// Finally, we say it should be equal to first guess
graph.addExpressionFactor(pose0_, mydata.cameras[0].pose(),
noiseModel::Isotropic::Sigma(6, 0.1));
// similarly, we create a prior on the first point
Point3_ point0_(P(0));
graph.addExpressionFactor(point0_, mydata.tracks[0].p,
noiseModel::Isotropic::Sigma(3, 0.1));
// We share *one* noiseModel between all projection factors
auto noise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
// Simulated measurements from each camera pose, adding them to the factor
// graph
size_t j = 0;
for (const SfmTrack& track : mydata.tracks) {
// Leaf expression for j^th point
Point3_ point_('p', j);
for (const SfmMeasurement& m : track.measurements) {
size_t i = m.first;
Point2 uv = m.second;
// Leaf expression for i^th camera
Expression<SfmCamera> camera_(C(i));
// Below an expression for the prediction of the measurement:
Point2_ predict_ = project2<SfmCamera>(camera_, point_);
// Again, here we use an ExpressionFactor
graph.addExpressionFactor(predict_, uv, noise);
}
j += 1;
}
// Create initial estimate
Values initial;
size_t i = 0;
j = 0;
for (const SfmCamera& camera : mydata.cameras) initial.insert(C(i++), camera);
for (const SfmTrack& track : mydata.tracks) initial.insert(P(j++), track.p);
/* Optimize the graph and print results */
Values result;
try {
LevenbergMarquardtParams params;
params.setVerbosity("ERROR");
LevenbergMarquardtOptimizer lm(graph, initial, params);
result = lm.optimize();
} catch (exception& e) {
cout << e.what();
}
cout << "final error: " << graph.error(result) << endl;
return 0;
}