-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_embeddings.py
86 lines (61 loc) · 2.58 KB
/
extract_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import pickle
import cv2
import os
import argparse
import imutils
#load our serialized face detector from disk
protopath="E:/FaceRecognitionFaceNet2.0/face_detection_model/deploy.prototxt.txt"
modelpath="E:/FaceRecognitionFaceNet2.0/face_detection_model/res10_300x300_ssd_iter_140000.caffemodel"
detector=cv2.dnn.readNetFromCaffe(protopath,modelpath)
#load embedding model from disk
embpath="C:/Users/LENOVO/Downloads/openface.nn4.small2.v1.t7"
embedder=cv2.dnn.readNetFromTorch(embpath)
knownEmbeddings=[]
knownNames=[]
total=0
datasetpath="E:/FaceRecognitionFaceNet2.0/train/"
for directory in os.listdir(datasetpath):
print(directory)
newpath=datasetpath+directory+'/'
for filename in os.listdir(newpath):
#print(filename)
imgpath=newpath+filename
image=cv2.imread(imgpath)
#image=cv2.resize(image,(600,600))
image = imutils.resize(image, width=600)
#image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
(h,w)=image.shape[:2]
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(image, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)
detector.setInput(imageBlob)
detections=detector.forward()
#ensure that atleast one face was found
if len(detections)>0:
# we're making the assumption that each image has only ONE
# face, so find the bounding box with the largest probability
i = np.argmax(detections[0, 0, :, 2])
confidence = detections[0, 0, i, 2]
# ensure that the detection with the largest probability also
# means our minimum probability test (thus helping filter out
# weak detections
if confidence > 0.5:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
face = image[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
if fW < 20 or fH < 20:
continue
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
(96, 96), (0, 0, 0), swapRB=True, crop=False)
embedder.setInput(faceBlob)
vec=embedder.forward()
knownEmbeddings.append(vec.flatten())
knownNames.append(directory)
total+=1
from numpy import asarray
from numpy import savez_compressed
ke=asarray(knownEmbeddings)
kn=asarray(knownNames)
savez_compressed('blaise-unknown-embeddings-names.npz',ke,kn)