-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
899 lines (718 loc) · 32.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
# _________________------------------------------OLD CRop IMage UPLOad Code______________------------------
# from __future__ import division, print_function
# import sys
# import os
# import glob
# import re
# import numpy as np
# # Keras
# from keras.models import load_model
# from keras.preprocessing import image
# # Flask utils
# from flask import Flask, redirect, url_for, request, render_template
# from werkzeug.utils import secure_filename
# from gevent.pywsgi import WSGIServer
# # Define a flask app
# app = Flask(__name__)
# MODEL_PATH = 'Model.hdf5'
# # Load your trained model
# print(" ** Model Loading **")
# model = load_model(MODEL_PATH)
# print(" ** Model Loaded **")
# model._make_predict_function()
# def model_predict(img_path, model):
# img = image.load_img(img_path, target_size=(224, 224))
# # Preprocessing the image
# x = image.img_to_array(img)
# x = np.expand_dims(x, axis=0)
# x = x/255
# preds = model.predict(x)
# d = preds.flatten()
# j = d.max()
# li=['Apple___Apple_scab', 'Apple___Black_rot', 'Apple___Cedar_apple_rust', 'Apple___healthy', 'Blueberry___healthy', 'Cherry_(including_sour)___Powdery_mildew', 'Cherry_(including_sour)___healthy', 'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot', 'Corn_(maize)___Common_rust_', 'Corn_(maize)___Northern_Leaf_Blight', 'Corn_(maize)___healthy', 'Grape___Black_rot', 'Grape___Esca_(Black_Measles)', 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)', 'Grape___healthy', 'Orange___Haunglongbing_(Citrus_greening)', 'Peach___Bacterial_spot', 'Peach___healthy', 'Pepper,_bell___Bacterial_spot', 'Pepper,_bell___healthy', 'Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy', 'Raspberry___healthy', 'Soybean___healthy', 'Squash___Powdery_mildew', 'Strawberry___Leaf_scorch', 'Strawberry___healthy', 'Tomato___Bacterial_spot', 'Tomato___Early_blight', 'Tomato___Late_blight', 'Tomato___Leaf_Mold', 'Tomato___Septoria_leaf_spot', 'Tomato___Spider_mites Two-spotted_spider_mite', 'Tomato___Target_Spot', 'Tomato___Tomato_Yellow_Leaf_Curl_Virus', 'Tomato___Tomato_mosaic_virus', 'Tomato___healthy']
# for index,item in enumerate(d):
# if item == j:
# class_name = li[index].split('___')
# return class_name
# @app.route('/')
# def index():
# # Main page
# return render_template('index.html')
# @app.route('/predict', methods=['GET', 'POST'])
# def upload():
# if request.method == 'POST':
# # Get the file from post request
# f = request.files['file']
# # Save the file to ./uploads
# basepath = os.path.dirname(__file__)
# file_path = os.path.join(
# basepath, 'uploads', secure_filename(f.filename))
# f.save(file_path)
# # Make prediction
# class_name = model_predict(file_path, model)
# result = str(f"Predicted Crop:{class_name[0]} Predicted Disease:{class_name[1].title().replace('_',' ')}")
# return result
# return None
# if __name__ == '__main__':
# app.run(debug=True)
# ---------------------------------------New Code CROP Disease Prediction Code________----------------------------------------------------------------------
from __future__ import division, print_function
import io
import numpy as np
from flask import Flask, request, render_template, jsonify, redirect, url_for ,session , flash
from werkzeug.utils import secure_filename
from transformers import pipeline
import torch
import requests
from PIL import Image
import base64
from torchvision import transforms
from utils.disease import disease_dic
from utils.fertilizer import fertilizer_dic
from markupsafe import Markup
import config
from utils.model import ResNet9
import pickle
import redis
import json
import firebase_admin
from firebase_admin import credentials
import time
from flask_cors import CORS
import firebase_admin
from firebase_admin import credentials, auth
from firebase_admin import credentials, auth, firestore
from flask import Flask, request,render_template, redirect,session
from flask_sqlalchemy import SQLAlchemy
import bcrypt
import os
import numpy as np
from PIL import Image
import tensorflow as tf
from keras.models import load_model
# from keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.utils import load_img, img_to_array
import pandas as pd
from dotenv import load_dotenv
# ---------------------old Pipelines for prediction--------------------------------------
# pipe = pipeline("image-classification", model="SanketJadhav/PlantDiseaseClassifier-Resnet50")
# pipe = pipeline("image-classification", model="ayerr/plant-disease-classification")
# ---------------------old Pipelines for prediction--------------------------------------
# -----------------------------------------new Pipeline for accurate prediction--------------------
pipe = pipeline("object-detection", model="krifa/LeafDiseaseDetection")
# -----------------------------------------new Pipeline for accurate prediction--------------------
# Firebase auth initialization
# cred = credentials.Certificate("reboot.json")
# # firebase_admin.initialize_app(cred)
# # firestore client initilaziation
# db = firestore.client()
# # Loading disease Classes
disease_classes = ['Apple___Apple_scab',
'Apple___Black_rot',
'Apple___Cedar_apple_rust',
'Apple___healthy',
'Blueberry___healthy',
'Cherry_(including_sour)___Powdery_mildew',
'Cherry_(including_sour)___healthy',
'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot',
'Corn_(maize)___Common_rust_',
'Corn_(maize)___Northern_Leaf_Blight',
'Corn_(maize)___healthy',
'Grape___Black_rot',
'Grape___Esca_(Black_Measles)',
'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
'Grape___healthy',
'Orange___Haunglongbing_(Citrus_greening)',
'Peach___Bacterial_spot',
'Peach___healthy',
'Pepper,_bell___Bacterial_spot',
'Pepper,_bell___healthy',
'Potato___Early_blight',
'Potato___Late_blight',
'Potato___healthy',
'Raspberry___healthy',
'Soybean___healthy',
'Squash___Powdery_mildew',
'Strawberry___Leaf_scorch',
'Strawberry___healthy',
'Tomato___Bacterial_spot',
'Tomato___Early_blight',
'Tomato___Late_blight',
'Tomato___Leaf_Mold',
'Tomato___Septoria_leaf_spot',
'Tomato___Spider_mites Two-spotted_spider_mite',
'Tomato___Target_Spot',
'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
'Tomato___Tomato_mosaic_virus',
'Tomato___healthy']
# disease_model_path = 'models/plant_disease_model.pth'
# disease_model = ResNet9(3, len(disease_classes))
# disease_model.load_state_dict(torch.load(
# disease_model_path, map_location=torch.device('cpu')))
# disease_model.eval()
# Loading crop recommendation model
crop_recommendation_model_path = 'D:\\new_crop\\Apna_kisan_MVp\\Apna_kisan_MVP\\model\\RandomForest.pkl'
crop_recommendation_model = pickle.load(
open(crop_recommendation_model_path, 'rb'))
soil_type_prediction_model_path = 'D:\\new_crop\\Apna_kisan_MVp\\Apna_kisan_MVP\\model\\DenseNet121v2_95.h5'
labels = ['Chalky Soil', 'Mary Soil', 'Sand', 'Slit Soil', 'Alluvial Soil', 'Black Soil', 'Clay Soil', 'Red Soil']
soil_model = tf.keras.models.load_model(soil_type_prediction_model_path)
# Load the model once and reuse it
model_path = "D:\\new_crop\\Apna_kisan_MVp\\Apna_kisan_MVP\\model\\SoilNet_93_86.h5"
SoilNet = tf.keras.models.load_model(model_path)
# Soil types and corresponding crop recommendations
classes = {
0: "Alluvial Soil:-{ Rice, Wheat, Sugarcane, Maize, Cotton, Soyabean, Jute }",
1: "Black Soil:-{ Virginia, Wheat, Jowar, Millets, Linseed, Castor, Sunflower }",
2: "Clay Soil:-{ Rice, Lettuce, Chard, Broccoli, Cabbage, Snap Beans }",
3: "Red Soil:-{ Cotton, Wheat, Pulses, Millets, Oil Seeds, Potatoes }"
}
# app = Flask(__name__)
# API key for OpenWeatherMap
# weather_api_key =''
load_dotenv() # Load environment variables from .env
weather_api_key = os.getenv("OPEN_WEATHER_APIKEY")
print(weather_api_key)
def get_weather_data(latitude, longitude, api_key=weather_api_key):
url = f"http://api.openweathermap.org/data/2.5/weather?lat={latitude}&lon={longitude}&appid={api_key}&units=metric"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
return {
'temperature': data['main']['temp'],
'humidity': data['main']['humidity'],
'pressure': data['main']['pressure'],
'wind_speed': data['wind']['speed']
}
else:
return None
recommendations = {
'Apple___Apple_scab': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Apple___Black_rot': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Apple___Cedar_apple_rust': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Blueberry___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Cherry_(including_sour)___Powdery_mildew': {
'fertilizer': 'Sulfur-based Fungicide',
'details': 'Use 100g per plant if high temperature.',
'application_method': 'Dilute in 1L of water and spray thoroughly.'
},
'Cherry_(including_sour)___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Corn_(maize)___Common_rust_': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Corn_(maize)___Northern_Leaf_Blight': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Corn_(maize)___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Grape___Black_rot': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Grape___Esca_(Black_Measles)': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Grape___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Orange___Haunglongbing_(Citrus_greening)': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Peach___Bacterial_spot': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Peach___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Pepper,_bell___Bacterial_spot': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Pepper,_bell___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Potato___Early_blight': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Potato___Late_blight': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Potato___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Raspberry___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Soybean___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Squash___Powdery_mildew': {
'fertilizer': 'Sulfur-based Fungicide',
'details': 'Use 100g per plant if high temperature.',
'application_method': 'Dilute in 1L of water and spray thoroughly.'
},
'Strawberry___Leaf_scorch': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Strawberry___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Tomato___Bacterial_spot': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Tomato___Early_blight': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Tomato___Late_blight': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Tomato___Leaf_Mold': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Tomato___Septoria_leaf_spot': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Tomato___Spider_mites Two-spotted_spider_mite': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Tomato___Target_Spot': {
'fertilizer': 'Copper-based Fungicide',
'details': 'Apply 150ml per plant if high humidity.',
'application_method': 'Mix with water and spray.'
},
'Tomato___Tomato_Yellow_Leaf_Curl_Virus': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Tomato___Tomato_mosaic_virus': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
},
'Tomato___healthy': {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, every two weeks.',
'application_method': 'Spread around base.'
}
}
def generate_fertilizer_recommendation(disease_name, latitude, longitude, api_key):
weather_data = get_weather_data(latitude, longitude, api_key)
if not weather_data:
return {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Could not fetch weather data. Use general-purpose fertilizer as per standard guidelines.',
'application_method': 'Spread evenly around the base of the plant and water thoroughly.'
}
temperature = weather_data['temperature']
humidity = weather_data['humidity']
if "blight" in disease_name.lower() and humidity > 80:
return {
'fertilizer': 'Copper-based Fungicide',
'details': f'Apply 150ml per plant. The high humidity ({humidity}%) suggests an increased risk, so apply every 7 days.',
'application_method': 'Mix with water and spray evenly over the leaves.'
}
elif "mildew" in disease_name.lower() and temperature > 30:
return {
'fertilizer': 'Sulfur-based Fungicide',
'details': f'Use 100g per plant. The high temperature ({temperature}°C) requires reapplication every 5 days.',
'application_method': 'Dilute in 1L of water and spray thoroughly.'
}
else:
return {
'fertilizer': 'General-purpose Fertilizer',
'details': 'Apply 50g per plant, once every two weeks during the growing season.',
'application_method': 'Spread evenly around the base of the plant and water thoroughly.'
}
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in {'png', 'jpg', 'jpeg'}
def predict_image(img, model=pipe):
"""
Transforms image to tensor and predicts disease label
:params: image
:return: prediction (string)
"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
])
image = Image.open(io.BytesIO(img))
img_t = transform(image)
img_u = torch.unsqueeze(img_t, 0)
# Get predictions from model
yb = model(img_u)
# Pick index with highest probability
_, preds = torch.max(yb, dim=1)
prediction = disease_classes[preds[0].item()]
# Retrieve the class label
return prediction
def preprocess_image(image_path):
"""
Preprocess the image to match the model input requirements.
"""
img = Image.open(image_path)
img = img.resize((224, 224)) # Resize the image to the model's input size
img = np.array(img) / 255.0 # Normalize the image
img = np.expand_dims(img, axis=0) # Add batch dimension
return img
def model_predict(image_path, model):
"""
Predicts the soil type and suggests crops based on the model prediction.
"""
image = load_img(image_path, target_size=(224, 224))
image = img_to_array(image)
image = image / 255.0
image = np.expand_dims(image, axis=0)
result = np.argmax(model.predict(image))
prediction = classes[result]
if result == 0:
return "Alluvial", "Alluvial.html"
elif result == 1:
return "Black", "Black.html"
elif result == 2:
return "Clay", "Clay.html"
elif result == 3:
return "Red", "Red.html"
def weather_fetch(city_name):
"""
Fetch and returns the temperature and humidity of a city.
:params: city_name
:return: temperature, humidity or None if there's an issue
"""
api_key = config.weather_api_key
base_url = "http://api.openweathermap.org/data/2.5/weather?"
complete_url = base_url + "appid=" + api_key + "&q=" + city_name
response = requests.get(complete_url)
x = response.json()
if x["cod"] != "404":
y = x.get("main", {})
# Safely get the temperature and convert from Kelvin to Celsius
temp_kelvin = y.get("temp")
if temp_kelvin is not None:
try:
temperature = round(temp_kelvin - 273.15, 2)
except TypeError as e:
print(f"Error rounding temperature: {e}")
temperature = None
else:
print(f"Temperature data not found in API response for city: {city_name}")
temperature = None
# Safely get the humidity
humidity = y.get("humidity")
if humidity is None:
print(f"Humidity data not found in API response for city: {city_name}")
# Return only if both temperature and humidity are valid
if temperature is not None and humidity is not None:
return temperature, humidity
else:
return None
else:
print(f"City {city_name} not found or API error occurred")
return None
# Set the allowed file extensions
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
# Load the image classification pipeline
pipe = pipeline("image-classification", model="SanketJadhav/PlantDiseaseClassifier-Resnet50")
# Check if the uploaded file is allowed
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
# Define a Flask app
app = Flask(__name__ , static_folder='static')
# app.secret_key = 'apna_kisan' # Use a strong secret key
CORS(app) # Enable CORS if needed
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///farmers_database.db'
app.config['UPLOAD_FOLDER'] = 'uploads/'
db = SQLAlchemy(app)
app.secret_key = 'apna_kisan'
class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(100), nullable=False)
email = db.Column(db.String(100), unique=True)
password = db.Column(db.String(100))
def __init__(self,email,password,name):
self.name = name
self.email = email
self.password = bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
def check_password(self,password):
return bcrypt.checkpw(password.encode('utf-8'),self.password.encode('utf-8'))
with app.app_context():
db.create_all()
# Define routes for login, signup, and logout
# @app.route('/')
# def index1():
# return render_template('index1.html')
@app.route('/signup', methods=['GET', 'POST'])
def register():
if request.method == 'POST':
name = request.form['name']
email = request.form['email']
password = request.form['password']
# Check if the user already exists
existing_user = User.query.filter_by(email=email).first()
if existing_user:
flash('Email address already registered.', 'error')
return render_template('signup.html')
# Create new user
new_user = User(name=name, email=email, password=password)
db.session.add(new_user)
db.session.commit()
flash('Registration successful! Please log in.', 'success')
return redirect('/login')
return render_template('signup.html')
@app.route('/login', methods=['GET', 'POST'])
def login():
if request.method == 'POST':
email = request.form['email']
password = request.form['password']
user = User.query.filter_by(email=email).first()
if user and user.check_password(password):
session['email'] = user.email
flash(f"User {user.email} logged in successfully.", 'success')
return redirect('/dashboard')
else:
flash('Invalid email or password.', 'error')
return render_template('login.html')
return render_template('login.html')
@app.route('/dashboard')
def dashboard():
if 'email' in session:
print(f"Session email: {session['email']}") # Debugging
user = User.query.filter_by(email=session['email']).first()
if user:
print(f"Rendering dashboard for {user.email}.") # Debugging
return render_template('dashboard.html', user=user)
print("Redirecting to login.") # Debugging
flash("You need to log in first.", 'warning')
return redirect('/login')
@app.route('/logout')
def logout():
session.pop('email', None)
flash('You have been logged out.', 'info')
return redirect('/login')
@app.route('/')
def index():
# Main page (Home)
return render_template('index.html')
@app.route('/home')
def home():
# Redirect to index for the Home link
return redirect(url_for('index'))
@ app.route('/crop-recommend')
def crop_recommend():
title = 'Arogya Krishi - Crop Recommendation'
return render_template('crop.html', title=title)
@app.route('/soil-predict', methods=['POST'])
def soil_prediction():
title = 'Arogya Krishi - Soil Prediction'
if 'soil_image' not in request.files:
return render_template('try_again.html', title=title, error_message="No file part in the request.")
file = request.files['soil_image']
if file.filename == '':
return render_template('try_again.html', title=title, error_message="No file selected for uploading.")
if file:
try:
# Secure and save the file
filename = secure_filename(file.filename)
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
print(f"File path: {file_path}") # Debugging line to check file path
file.save(file_path)
# Use the model_predict function to predict soil type and recommend crop
predicted_soil, template_name = model_predict(file_path, SoilNet)
print(f"Predicted Soil: {predicted_soil}, Template: {template_name}") # Debugging line
return render_template(template_name, prediction=predicted_soil, title=title)
except Exception as e:
print(f"Error: {str(e)}") # Print the error to the console for debugging
return render_template('try_again.html', title=title, error_message=f"An error occurred: {str(e)}")
return render_template('try_again.html', title=title, error_message="Something went wrong.")
@ app.route('/fertilizer')
def fertilizer_recommendation():
title = 'Harvestify - Fertilizer Suggestion'
return render_template('fertilizer.html', title=title)
@ app.route('/fertilizer-predict', methods=['POST'])
def fert_recommend():
title = 'Arogya Krishi - Fertilizer Suggestion'
crop_name = str(request.form['cropname'])
N = int(request.form['nitrogen'])
P = int(request.form['phosphorous'])
K = int(request.form['pottasium'])
# ph = float(request.form['ph'])
df = pd.read_csv('D:\\new_crop\\Apna_kisan_MVp\\Apna_kisan_MVP\data\\fertilizer.csv')
nr = df[df['Crop'] == crop_name]['N'].iloc[0]
pr = df[df['Crop'] == crop_name]['P'].iloc[0]
kr = df[df['Crop'] == crop_name]['K'].iloc[0]
n = nr - N
p = pr - P
k = kr - K
temp = {abs(n): "N", abs(p): "P", abs(k): "K"}
max_value = temp[max(temp.keys())]
if max_value == "N":
if n < 0:
key = 'NHigh'
else:
key = "Nlow"
elif max_value == "P":
if p < 0:
key = 'PHigh'
else:
key = "Plow"
else:
if k < 0:
key = 'KHigh'
else:
key = "Klow"
response = Markup(str(fertilizer_dic[key]))
return render_template('fertilizer-result.html', recommendation=response, title=title)
# render disease prediction result page
# render disease prediction result page
# @app.route('/disease')
# def disease_prediction():
# # Disease prediction page
# return render_template('disease.html')
@app.route('/predict', methods=['POST'])
def upload():
if request.method == 'POST':
if 'file' not in request.files:
return jsonify({'error': 'No file part in the request'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No file selected for uploading'}), 400
if file and allowed_file(file.filename):
# Load the image
img = Image.open(file).convert('RGB')
# Convert the image to a base64 string
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
# Use the pipeline to make a prediction
prediction = pipe(img)
print(prediction) # Debugging line
# Get the highest probability label
if prediction:
top_prediction = max(prediction, key=lambda x: x['score'])
return render_template('crop-result.html', prediction=top_prediction, image_base64=img_base64)
else:
return jsonify({'error': 'No predictions made'}), 500
else:
return jsonify({'error': 'Allowed file types are png, jpg, jpeg'}), 400
@app.route('/disease-predict', methods=['GET', 'POST'])
def disease_prediction():
title = 'Arogya Krishi - Disease Detection'
if request.method == 'POST':
if 'file' not in request.files:
error = 'No file part in the request'
return render_template('disease.html', title=title, error=error)
file = request.files.get('file')
if not file or not allowed_file(file.filename):
error = 'Allowed file types are png, jpg, jpeg'
return render_template('disease.html', title=title, error=error)
try:
# Load the image
img = Image.open(file).convert('RGB')
# Convert the image to a base64 string
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
# Use the pipeline to make a prediction
prediction = pipe(img)
print("Prediction:", prediction) # Debugging line
# Get the highest probability label
if prediction:
top_prediction = max(prediction, key=lambda x: x['score'])
disease_name = top_prediction['label']
# Example: set fixed latitude and longitude for now
latitude = 19.0760
longitude = 72.8777
# Generate the fertilizer recommendation dynamically
fertilizer_info = generate_fertilizer_recommendation(disease_name, latitude, longitude, weather_api_key)
return render_template('disease-result.html',
prediction=top_prediction,
fertilizer=fertilizer_info,
image_base64=img_base64,
title=title)
else:
error = 'No predictions made. Please try again with a different image.'
return render_template('disease.html', title=title, error=error)
except Exception as e:
print(f"Error: {e}") # Log the error for debugging
error = 'An error occurred during prediction. Please try again.'
return render_template('disease.html', title=title, error=error)
return render_template('disease.html', title=title)
if __name__ == '__main__':
app.run(debug=True)