-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathsimWrap.py
179 lines (146 loc) · 5.87 KB
/
simWrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 3, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street, Fifth
# Floor, Boston, MA 02110-1301, USA.
#
'''
*******************************************************************
* File: simWrap.py
* Description: Base class for simulator interfaces for findSim
* Author: Upinder S. Bhalla
* E-mail: [email protected]
********************************************************************/
'''
import json
#from simError import SimError
import numpy as np
if __package__ is None or __package__ == '':
from simError import SimError
else:
from FindSim.simError import SimError
class SimWrap():
def __init__( self, *args, **kwargs ):
self.ignoreMissingObj = kwargs["ignoreMissingObj"]
self.silent = kwargs["silent"]
self.modelLookup = {}
self.runtime = 0.0
self.loadtime = 0.0
self.paramAccessTime = 0.0
if "mapFile" in kwargs and len( kwargs["mapFile"] ) > 5:
with open( kwargs["mapFile"] ) as fd:
self.objMap = json.load( fd )
self.modelId = ""
self.plots = {} # Keys: Readout objects. Values: 2d numpy arrays
self.upperLimit = {} # Key: field name . Value: upper limit
self.lowerLimit = {} # Key: field name. Values: lower limit
return
def diagnostics( self, sim, expt, exptType ):
if not expt:
ex = []
ey = []
else:
edata = np.array( expt )
ex = edata[:,0]
ey = edata[:,1]
return { "runtime": self.runtime,
"loadtime": self.loadtime,
"paramAccessTime": self.paramAccessTime,
"exptType": exptType,
"sim": np.array( sim ),
"exptX": ex,
"exptY": ey
}
def lookup( self, key ):
ret = self.modelLookup.get( key )
if ret:
return ret
elif self.ignoreMissingObj:
return []
raise SimError( "SimWrap: failed modelLookup[{}]".format( key ) )
def _scaleParams( self, params ):
if len(params) == 0:
return
if (len(params) % 3) != 0:
raise SimError( "scaleParam: expecting triplets of [obj, field, scale], got: '{}'".format( params ) )
for i in range( 0, len(params), 3):
self._scaleOneParam( params[i:i+3] )
# _scaleOneParam is a derived function
def getParamVec( self, params ):
# Params is a list of strings of form obj.field
# If param not found we put in a -1.
ret = []
for p in params:
[ obj, field ] = p.split( '.' )
ret.append( self.getObjParam( obj, field, isSilent=False ) )
return ret
def _scaleOneParam( self, params ): # place holder, to be overridden
return
def deleteItems( self, itemsToDelete ): # to be overridden
return
def subsetItems( self, modelSubset ): # to be overridden
return
def pruneDanglingObj( self, erSPlist ): # to be overridden
return
def loadModelFile( self, fname, modifyFunc, scaleParam, dumpFname, paramFname ): # to be overridden
self.turnOffElec = True
return
def changeParams( self, params ):
return
def buildSolver( self, solver, useVclamp = False, minInterval = 1 ):
return
def buildVclamp( self, stim ):
return
def setHsolveState(self, state, pauseHsolve):
return
def makeReadoutPlots( self, readouts ):
return
def fillPlots( self ): # takes plots from sim and puts the numpy arrays of the plot values from sim into the return. Also returns dt as a float and numMainPlots
return [], [1.0], 0
def deliverStim( self, qe ):
return
def getCurrentTime( self ):
return 0.0
def advanceSimulation( self, advanceTime, doPlot = True, doSettle = False ):
return
def reinitSimulation( self ):
return
def sumFields( self, entityList, field ):
return 0.0
def getObjParam( self, entity, field ):
return 0.0
def steadyStateStims(self, stimList, responseList, isSeries = False, settleTime = 300 ):
'''
Computes steady_state output for specified stimulus combinatations.
stimList is 2-D list of
(stimEntity, field, value, scale) tuples.
The first dimension is the combined stimulus for each data point
The second dimension is the series of data points.
responseList is list of
(respEntityList, field, refEntityList, field)
tuples for the readout. The respEntityList/refEntityList specify
multiple entities whose values should be summed for the response.
In some cases we have a special global reference stimulus. This
is just another entry in the stimList.
isSeries is true if the entries are successive, like a dose-response
This function is used for a doser by having just the same
stimulus entity throughout, for a series of doses.
Returns the list of responses, and the list of matching references.
'''
return [], []
def deleteSimulation( self ):
return
def presettle( self ):
return {}
def assignPresettle( settledict ):
return