-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
299 lines (274 loc) · 9.73 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import argparse
import logging
import os
from pathlib import Path
import pytorch_lightning as pl
import s3fs
import torch
import yaml
from comp.data.loaders import prepare_training_data
from comp import metric_handlers
from comp.nn.utils import Encoder, GaussianDecoder, calc_input_dims
from comp.nn.config import ModelConfig, TrainConfig
from comp.pl.vae import VAE
from comp.pl.cvae import CVAE
from comp.pl.comp import COMP
from comp.pl.trvae import TrVAE
from comp.pl.trainer import create_trainer
logging.basicConfig(
format="%(asctime)s - %(name)s:%(lineno)d - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
LOGGER = logging.getLogger(__name__)
LOGGER.setLevel(logging.INFO)
s3_fs = s3fs.S3FileSystem()
def main(
data_dir: str,
dataset: str,
model_config: ModelConfig,
train_config: TrainConfig,
use_cuda: bool,
seed: float,
output_dir: str,
enable_profiler: bool = False,
):
pl.seed_everything(seed)
tensor_dataset, train_loader, val_loader, metadata_df = prepare_training_data(
data_dir=data_dir,
batch_size=train_config.batch_size,
include_labels=True,
use_cuda=use_cuda,
)
# Instantiate model
encoder_input_dim, decoder_input_dim = calc_input_dims(tensor_dataset, model_config)
gene_expression_dim = tensor_dataset.tensors[0].shape[1]
if model_config.model == "trvae":
return_hidden = True
else:
return_hidden = False
LOGGER.info(
f'Input tensor shapes {tensor_dataset.tensors[0].shape[0]} x ({", ".join(str(t.shape[1]) for t in tensor_dataset.tensors)})'
)
LOGGER.info(
f"Encoder input dim {encoder_input_dim}; decoder input dim {decoder_input_dim}; decoder output dim {gene_expression_dim}"
)
encoder = Encoder(
encoder_input_dim,
model_config.latent_dim,
model_config.hidden_dim,
n_layers=model_config.num_layers,
use_batchnorm=model_config.use_batchnorm,
bandwidth=model_config.bandwidth,
)
decoder = GaussianDecoder(
gene_expression_dim,
decoder_input_dim,
model_config.hidden_dim,
model_config.num_layers,
return_hidden=return_hidden,
use_batchnorm=model_config.use_batchnorm,
)
baseline_dist = torch.distributions.Normal(
loc=tensor_dataset.tensors[0].mean(), scale=1
)
with torch.no_grad():
baseline_logprob = (
baseline_dist.log_prob(torch.as_tensor(tensor_dataset.tensors[0]))
.mean()
.item()
)
LOGGER.info(
"Baseline log prob (using independent marginals): %f", baseline_logprob
)
if model_config.model == "vae":
model = VAE(
encoder,
decoder,
model_config.latent_dim,
learning_rate=train_config.learning_rate,
gamma=train_config.gamma,
beta=model_config.kl_beta,
)
elif model_config.model == "cvae":
model = CVAE(
encoder,
decoder,
model_config.latent_dim,
penalty=model_config.cvae_penalty,
penalty_scale=model_config.penalty_scale,
learning_rate=train_config.learning_rate,
gamma=train_config.gamma,
beta=model_config.kl_beta,
)
elif model_config.model == "comp":
model = COMP(
encoder,
decoder,
model_config.latent_dim,
penalty_scale=model_config.penalty_scale,
learning_rate=train_config.learning_rate,
gamma=train_config.gamma,
beta=model_config.kl_beta,
)
elif model_config.model == "trvae":
model = TrVAE(
encoder,
decoder,
model_config.latent_dim,
penalty_scale=model_config.penalty_scale,
learning_rate=train_config.learning_rate,
gamma=train_config.gamma,
beta=model_config.kl_beta,
penalise_z=model_config.penalise_z,
rbf_version=model_config.rbf_version,
)
else:
assert False, f"{model_config.model} is not handled when creating model"
checkpoint_callback = None
tb_dir = os.path.join(output_dir, "logs")
gpu_arg = 1 if use_cuda else None
trainer_args = dict(
output_dir=tb_dir,
num_epochs=train_config.num_epochs,
gpus=gpu_arg,
checkpoint_metric_name="valid_loss",
checkpoint_monitor_mode="min",
early_stopping=False,
early_stopping_delta=1e-6,
early_stopping_patience=50,
weights_summary="full",
check_val_every_n_epoch=train_config.check_val_every_n_epoch,
)
if enable_profiler:
LOGGER.warning(
f"Pytorch profiler enabled; writing TensorBoard logs to {str(tb_dir)}"
)
with torch.profiler.profile(
schedule=torch.profiler.schedule(wait=2, warmup=2, active=6, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler(tb_dir),
) as profiler:
trainer, checkpoint_callback = create_trainer(
**trainer_args, profiler=profiler
)
trainer.fit(model, train_loader, val_dataloaders=val_loader)
else:
trainer, checkpoint_callback = create_trainer(**trainer_args)
trainer.fit(model, train_loader, val_dataloaders=val_loader)
if checkpoint_callback is not None:
model_list = [k for k in checkpoint_callback.best_k_models.keys()]
else:
LOGGER.info(
"No checkpoint callback found, calculating metrics and results for current model instance instead."
)
model_list = [model]
metric_handlers.calc_metrics(
output_dir=output_dir,
dataset=tensor_dataset,
sample_metadata_df=metadata_df,
models=model_list,
dataset_name=dataset,
model_type=model_config.model,
load_model_fn=model.load_from_checkpoint,
use_cuda=use_cuda,
)
def create_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--data-dir", type=str, default="data")
parser.add_argument("--dataset", choices=["tumour_cl", "kang", "uci-income", "tech-batch"])
# Model config
parser.add_argument("--model", choices=["vae", "cvae", "comp", "trvae"])
parser.add_argument("--hidden-dim", type=int, default=10)
parser.add_argument("--latent-dim", type=int, default=16)
parser.add_argument("--num-layers", type=int, default=1)
parser.add_argument("--penalty-scale", type=float, default=1.0)
parser.add_argument("--cvae-penalty", default=None)
parser.add_argument(
"--kl-beta",
type=float,
default=1.0,
help="Beta-VAE scale factor for the KL term in the VAE ELBO",
)
parser.add_argument(
"--use-batchnorm",
type=int,
default=0,
help="Whether to use batchnorm in the decoder.",
)
parser.add_argument(
"--bandwidth",
type=float,
default=0.1,
help="The constant value of the posterior Gaussian scale.",
)
parser.add_argument(
"--penalise-z",
type=int,
default=0,
help="Whether to penalise z. If False, penalise first hidden layer. Applicable to TrVAE",
)
parser.add_argument(
"--rbf-version",
type=int,
default=0, # This is multiscale version from TrVAE
help="RBF kernel version. Applicable to TrVAE only. For versions, see the global variables in the modules.",
)
# Training config
parser.add_argument("--batch-size", type=int, default=50)
parser.add_argument("--num-epochs", type=int, default=10)
parser.add_argument("--learning-rate", type=float, default=0.01)
parser.add_argument("--check-val-every-n-epoch", type=int, default=1)
parser.add_argument("--use-cuda", action="store_true", default=False)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--output-dir", default="/tmp/comp")
parser.add_argument(
"--profiler",
action="store_true",
default=False,
help="Enable Pytorch profiler, logging to TensorBoard (Lightning only).",
)
return parser
if __name__ == "__main__":
parser = create_arg_parser()
args = parser.parse_args()
output_dir = args.output_dir
if args.output_dir[0:2] != "s3":
Path(output_dir).mkdir(
parents=True, exist_ok=True
) # if s3, assume folder already exists
(Path(output_dir) / "latents").mkdir(parents=True, exist_ok=True)
(Path(output_dir) / "umaps").mkdir(parents=True, exist_ok=True)
config_path = os.path.join(output_dir, "config.yaml")
if output_dir[0:2] == "s3":
with s3_fs.open(config_path, "w") as fp:
yaml.dump(vars(args), fp)
else:
with open(config_path, "w") as fp:
yaml.dump(vars(args), fp)
main(
data_dir=args.data_dir,
dataset=args.dataset,
model_config=ModelConfig(
model=args.model,
latent_dim=args.latent_dim,
hidden_dim=args.hidden_dim,
num_layers=args.num_layers,
penalty_scale=args.penalty_scale,
cvae_penalty=args.cvae_penalty,
kl_beta=args.kl_beta,
use_batchnorm=bool(args.use_batchnorm),
bandwidth=args.bandwidth,
penalise_z=bool(args.penalise_z),
rbf_version=args.rbf_version,
),
train_config=TrainConfig(
batch_size=args.batch_size,
num_epochs=args.num_epochs,
learning_rate=args.learning_rate,
gamma=1.0,
check_val_every_n_epoch=args.check_val_every_n_epoch,
),
use_cuda=args.use_cuda,
seed=args.seed,
output_dir=output_dir,
enable_profiler=args.profiler,
)