-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathSkaPy_script1.py
940 lines (749 loc) · 35.8 KB
/
SkaPy_script1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
# -*- coding: utf-8 -*-
"""
Created on Fri May 11 12:02:35 2018
@author: blepillier
NOTE 1:
For the stereonet projections to work properly you should run from
Anaconda command prompt the following commands:
python -m pip install --upgrade pip setuptools wheel
and
pip install mplstereonet
For stereonet documentation check: https://github.com/joferkington/mplstereonet
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import pandas as pd
import matplotlib.gridspec as gridspec
import itertools
from time import clock
import os
import pickle
import mplstereonet
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
#%%Import excel file to be analyzed (excel needs o be saved as .csv)
# Where is your file is located
loaddir = r'D:\blepillier\Desktop\BackUp_2018\201807-SCL_DFN_Gemex\Input'
# Where the results should be saved
savedir = r'D:\blepillier\Desktop\BackUp_2018\201807-SCL_DFN_Gemex'
# Import CSV file
# Give filename
filename = '{}/201807_GeMex-Frac_BatL.csv'
# Save the csv as df means a PANDA DATAFRAME
try:
df = pd.read_csv(filename.format(loaddir), delimiter=';', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
#%% DataFrame Tuning
# for the purpose of statistic calculation VS database tuning
# df is the main dataframe, with NO DUPLICATES
# (refering to the field 'Q' standing for Quantity as the number of fractures per interval)
# from this initial df, we here-after create a second dataframe with duplicates: df2
df2 = df.loc[np.repeat(df.index.values, df['Q'])]
#%%
# --- PART 1 - QUICK LOOK AT THE DATA ---
#
#%% first Quick look at the data
# Print out df columns:
print("dataframe columns are:\n", df.columns)
# Get series out of dataframe and convert to np.arrays
Ap = np.array(df2.F_Ap)
H = np.array(df2.F_H)
# Sort the data and re-index for sorted data:
Ap_sorted = np.sort(Ap)
H_sorted = np.sort(H)
x_sorted = range(0, len(df2.F_H))
# Calculate Exceedance Frequencies EFs:
EF_a = []
EF_h = []
i = 0
for idx, i in enumerate(Ap_sorted):
i = (len(Ap_sorted) - idx) / (len(Ap_sorted))
EF_a.append(i)
for idx, i in enumerate(H_sorted):
i = (len(H_sorted) - idx) / (len(H_sorted))
EF_h.append(i)
# Figure 1, here give a color reference for Ap & H:
col_Ap = 'b'
col_H = 'c'
col_St = 'r'
# Fig is made of 3 plots: 1/All frac_Heights - 2/All frac_Ap - 3/Both
# Define Figure/plot specs
fig1 = plt.figure(figsize=(12,4),facecolor='w')
row = 2
column = 3 #
gs = gridspec.GridSpec(row,column)
# define subplot axes
ax0 = plt.subplot(gs[:,0])
ax1 = plt.subplot(gs[:,1])
ax2 = plt.subplot(gs[0,2])
ax3 = plt.subplot(gs[1,2])
gs.update(wspace=0.45 ,hspace=0)
ax0.scatter(EF_h, H_sorted, c=col_H, s=2)
ax0.set_xscale('log')
ax0.set_xlim(0.1, 10)
ax0.set_yscale('log')
ax0.set_ylim(0.1, 100)
ax0.set_xlabel('Fracture Heights')
ax0.set_ylabel('Exceedance Frequency')
ax1.scatter(EF_a, Ap_sorted, c=col_Ap, s=2)
ax1.set_xscale('log')
ax1.set_xlim(0.0001, 100)
ax1.set_yscale('log')
ax1.set_ylim(0.01, 10)
ax1.set_xlabel('Fracture Apertures')
ax1.set_ylabel('Exceedance Frequency')
# Plot Ap & H as hist, (sort of bi-histogram inverted = back to back):
ax2.bar(df2.index, df2.F_H, color=col_H)
ax2.set_ylim(0, 1.05*df.F_H.max())
ax2.set_ylabel('Heights (m)', color=col_H, fontsize=8)
ax2.xaxis.set_ticks_position('none')
ax2.get_yaxis().set_label_coords(-0.15, 0.5)
ax3.bar(df2.index, df2.F_Ap, color=col_Ap)
ax3.set_ylim(0, 1.05*df.F_Ap.max())
ax3.invert_yaxis()
ax3.set_ylabel('Apertures (mm)', color=col_Ap, fontsize=8)
ax3.set_xlabel('Sorted fracture indices')
ax3.get_yaxis().set_label_coords(-0.15, 0.5)
plt.tight_layout()
plt.suptitle('Quick look at all dataset', y=1.10, fontsize=10)
plt.show()
fig1.savefig('Figure_01_EF', dpi=300)
#%% STEREOPLOTS & ROSE DIAGRAM ! (For the entire dataset)
# Define Figure/plot specs
fig2 = plt.figure(figsize=(7,4))
row = 1
column = 2
gs = gridspec.GridSpec(row,column)
# STEREOGRAM: Define subplots axes:
ax0 = plt.subplot(gs[0,0])
ax1 = plt.subplot(gs[0,1])
# STEREOGRAM: Density Contouring:
ax0 = fig2.add_subplot(gs[0,0], projection='stereonet')
ax0.plane(df2.F_Az.dropna(), df2.F_Dip.dropna(), c='k', linewidth=0.1)
ax0.density_contourf(df2.F_Az.dropna(), df2.F_Dip.dropna(), measurement='poles', cmap='Reds')
ax0.set_title('Steronet & Density coutour of the Poles', y=1.10, fontsize=8)
ax0.grid()
# ROSE DIAGRAM: Calculate the number of strikes every 10° using np.hist
bin_edges = np.arange(-5, 366, 10)
number_of_strikes, bin_edges = np.histogram(df2.F_Az.dropna(), bin_edges)
# ROSE DIAGRAM: Sum the last value with the first value.
number_of_strikes[0] += number_of_strikes[-1]
# ROSE DIAGRAM: Sum the first half 0-180° with the second half 180-360° to achieve the "mirrored behavior" of Rose Diagrams.
half = np.sum(np.split(number_of_strikes[:-1], 2), 0)
two_halves = np.concatenate([half, half])
# ROSE DIAGRAM: Create the Rose Diagram:
ax1 = fig2.add_subplot(gs[0,1], projection='polar')
ax1.bar(np.deg2rad(np.arange(0, 360, 10)), two_halves, width=np.deg2rad(10), bottom=0.0, color='.8', edgecolor='k')
ax1.set_theta_zero_location('N')
ax1.set_theta_direction(-1)
ax1.set_thetagrids(np.arange(0, 360, 45), labels=np.arange(0, 360, 45))
ax1.set_rgrids(np.arange(0, two_halves.max() + 1, 50), labels=None, fontsize=6)
ax1.set_title('Rose Diagram of the Fractures', y=1.10, fontsize=8)
plt.suptitle('All fracture sets', y=1.10, fontsize=10)
#fig2.tight_layout()
fig2.show()
fig2.savefig('Figure_02_Stero_All', dpi=300)
#%%
# --- PART 2 - NOW Working On CLASSES
#
#%% Function to create the classes based on [Strike and Dip] = [F_Az and F_Dip]
def set_class(row):
if row['F_Dip'] <= 40 and 85 <= row['F_Az'] <= 120 or row['F_Dip'] <= 40 and 265 <= row['F_Az'] <= 300:
return 'F6'
elif 43 <= row['F_Az'] <= 75 or 225 <= row['F_Az'] <= 255:
return 'F1'
elif 120 <= row['F_Az'] <= 145 or 300 <= row['F_Az'] <= 325:
return 'F2'
elif 10 <= row['F_Az'] <= 40 or 190 <= row['F_Az'] <= 220:
return 'F3'
elif 90 <= row['F_Az'] <= 120 or 270 <= row['F_Az'] <= 300:
return 'F4'
elif 0 <= row['F_Az'] <= 10 or 145 <= row['F_Az'] <= 190 or 325 <= row['F_Az'] <= 360:
return 'F5'
elif 75 <= row['F_Az'] <= 90 or 255 <= row['F_Az'] <= 290:
return 'F7'
else:
return 'nan'
df = df.assign(F_Class=df.apply(set_class, axis=1))
df2 = df2.assign(F_Class=df.apply(set_class, axis=1))
print('*** Classification Done! ***')
#%% Assigning AVG values for DFN construction, based on Geological interp.
df['F_Az_mean'] = np.nan
df.F_Az_mean[df['F_Class'] == 'F6'] = 105
df.F_Az_mean[df['F_Class'] == 'F1'] = 60
df.F_Az_mean[df['F_Class'] == 'F2'] = 135
df.F_Az_mean[df['F_Class'] == 'F3'] = 30
df.F_Az_mean[df['F_Class'] == 'F4'] = 110
df.F_Az_mean[df['F_Class'] == 'F5'] = 170
df.F_Az_mean[df['F_Class'] == 'F7'] = 80
df['F_Dip_mean'] = np.nan
for F in df['F_Class'].unique():
df['F_Dip_mean'][df['F_Class'] == F] = round(df.F_Dip.dropna()[df['F_Class'] == F].mean())
#%% STEREOPLOTS & ROSE DIAGRAM per F_Class!
# Here is a for loop going in F_Class and pick-out all different values: F1, F2,..F7 and Fnan:
for F in df2['F_Class'].unique():
#for F in ['F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7']:
sF = df2.F_Az[df['F_Class'] == F]
dF = df2.F_Dip[df['F_Class'] == F]
# Define Figure/plot specs
fig3 = plt.figure(figsize=(7,4))
row = 1
column = 2
gs = gridspec.GridSpec(row,column)
# STEREOGRAM: Define subplots axes:
ax0 = plt.subplot(gs[0,0])
ax1 = plt.subplot(gs[0,1])
# STEREOGRAM: Density Contouring:
ax0 = fig3.add_subplot(gs[0,0], projection='stereonet')
ax0.plane(sF, dF, c='k', linewidth=0.1)
ax0.density_contourf(sF.dropna(), dF.dropna(), measurement='poles', cmap='Reds')
ax0.set_title('Steronet & Density contour of the Poles', y=1.10, fontsize=8, va='bottom')
ax0.grid()
# ROSE DIAGRAM: Calculate the number of strikes every 10° using np.hist
bin_edges = np.arange(-5, 366, 10)
number_of_strikes, bin_edges = np.histogram(sF.dropna(), bin_edges)
# ROSE DIAGRAM: Sum the last value with the first value.
number_of_strikes[0] += number_of_strikes[-1]
# ROSE DIAGRAM: Sum the first half 0-180° with the second half 180-360° to achieve the "mirrored behavior" of Rose Diagrams.
half = np.sum(np.split(number_of_strikes[:-1], 2), 0)
two_halves = np.concatenate([half, half])
# ROSE DIAGRAM: Create the Rose Diagram:
ax1 = fig3.add_subplot(gs[0,1], projection='polar')
ax1.bar(np.deg2rad(np.arange(0, 360, 10)), two_halves, width=np.deg2rad(10), bottom=0.0, color='.8', edgecolor='k')
ax1.set_theta_zero_location('N')
ax1.set_theta_direction(-1)
ax1.set_thetagrids(np.arange(0, 360, 45), labels=np.arange(0, 360, 45))
ax1.set_rgrids(np.arange(0, two_halves.max() + 1, 50), labels=None, fontsize=6)
ax1.set_title('Rose Diagram of the Fractures', y=1.10, fontsize=8, va='bottom')
plt.suptitle('Fracture set %s'%F, y=1.10, fontsize=10)
# fig3.tight_layout()
fig3.show()
fig3.savefig('Figure_03_SteroRoses_%s'%F, dpi=300)
#%% BoxPlots All Families Heights
# Define Figure/plot specs
fig4 =plt.figure(figsize=(7,5),facecolor='w')
column = 1
row = 1
gs = gridspec.GridSpec(row,column)
# define subplot axes
ax0 = plt.subplot(gs[0,0])
# Create an empty matrix HF((n_row, n_col)) where to store the data:
n_row = df2.shape[0]
n_col = df2['F_Class'].unique().shape[0]
HF = np.empty((n_row, n_col))
HF[:] = np.nan # fill the matrix with nan
# X and Y are just here to control what is happening in the loop:
X = []
Y = []
column = 0
for F in df2['F_Class'].unique():
hF = df2.F_H.dropna()[df['F_Class'] == F]#.as_matrix()
m_row = hF.shape[0]
HF[0:m_row, column] = hF
column = column + 1
X.append(F)
Y.append(m_row)
HF = pd.DataFrame(HF, columns=df2['F_Class'].unique())
#print('m_row', m_row)
#print('Y is:', Y)
#print('X is:', X)
#print('Shape of X:', type(X))
#print('HF is:', HF)
#print('the shape of HF is:', HF.shape)
#print('hF is:', hF)
#print('the shape of hF is:', hF.shape)
#print('column:', column)
HF.boxplot(ax=ax0, vert=True, patch_artist=None, showmeans=True, rot=90)
ax0.set_title('Boxplot of fracture heights per fracture class', fontsize=8)
ax0.set_ylabel('Fracture Height', fontsize=8)
ax0.grid(None)
plt.ylim((-10,50))
fig4.show()
fig4.savefig('Figure_04_BoxPlots_All', dpi=300)
#%%
# --- PART 3 - BoxPlots = CLASSES and OUTCROPS
#
#%% Box Plots & bi-histograms Per Outcrops:
# Here is a for loop creating a new df per Outcrop:
for name in df2['Outcrop Name'].unique():
df_outcrop = pd.DataFrame(df2.loc[df['Outcrop Name'] == name])
# Define Figure/plot specs
fig5 =plt.figure(figsize=(12,4),facecolor='w')
column = 3
row = 2
gs = gridspec.GridSpec(row,column)
gs.update(wspace=0.45 ,hspace=0)
# Define subplots axes:
ax0 = plt.subplot(gs[:,0])
ax1 = plt.subplot(gs[:,1])
ax2 = plt.subplot(gs[0,2])
ax3 = plt.subplot(gs[1,2])
# Create an empty matrix HF((n_row, n_col)) where to store the data:
n_row = df_outcrop.shape[0]
n_col = df_outcrop['F_Class'].unique().shape[0]
HF_outcrop = np.empty((n_row, n_col))
HF_outcrop[:] = np.nan # fill the matrix with nan
AF_outcrop = np.empty((n_row, n_col))
AF_outcrop[:] = np.nan # fill the matrix with nan
# X and Y are just here to control what is happening in the loop:
X = []
Y = []
column1 = 0
column2 = 0
# Exporting Quantiles as CSV file:
for OC in df_outcrop['F_Class'].unique():
Ap_Quantile = (df_outcrop['F_Ap'][df_outcrop['F_Class'] == OC ].quantile([0.1, 0.5, 0.9]))
H_Quantile = (df_outcrop['F_H'][df_outcrop['F_Class'] == OC ].quantile([0.1, 0.5, 0.9]))
df_outcrop['Ap_std'] = df_outcrop['F_Ap'][df_outcrop['F_Class'] == OC ].std
Stats_OC = pd.concat([Ap_Quantile, H_Quantile], axis=1)
Stats_OC.to_csv('Outcrops_Quantiles' + name + OC + '.csv')
for F_out in df_outcrop['F_Class'].unique():
hF = df_outcrop.F_H.dropna()[df_outcrop['F_Class'] == F_out]#.as_matrix()
m_row = hF.shape[0]
HF_outcrop[0:m_row, column1] = hF
column1 = column1 + 1
X.append(F_out)
Y.append(m_row)
HF_outcrop = pd.DataFrame(HF_outcrop, columns=df_outcrop['F_Class'].unique())
HF_outcrop.boxplot(ax=ax0, vert=True, patch_artist=None, showmeans=True, rot=90)
ax0.set_title('Boxplot of fracture heights per fracture class', fontsize=8)
ax0.set_ylim(-10, 50)
ax0.set_ylabel('Fracture Height', fontsize=8)
ax0.grid(None)
for F_out in df_outcrop['F_Class'].unique():
aF = df_outcrop.F_Ap.dropna()[df_outcrop['F_Class'] == F_out]#.as_matrix()
m_row = aF.shape[0]
AF_outcrop[0:m_row, column2] = aF
column2 = column2 + 1
X.append(F_out)
Y.append(m_row)
AF_outcrop = pd.DataFrame(AF_outcrop, columns=df_outcrop['F_Class'].unique())
AF_outcrop.boxplot(ax=ax1, vert=True, patch_artist=None, showmeans=True, rot=90)
ax1.set_title('Boxplot of fracture Apertures per fracture class', fontsize=8)
ax1.set_ylim(-0.5, 2)
ax1.set_ylabel('Fracture Aperture', fontsize=8)
ax1.grid(None)
# Creating Now the Bi-Histogram:
ax2.bar(df_outcrop.index, df_outcrop.F_H, color=col_H)
# ax2.set_ylim(0, 1.05*df_outcrop.F_H.max())
ax2.set_ylim(0, 50)
ax2.set_ylabel('Heights (m)', color=col_H, fontsize=8)
ax2.xaxis.set_ticks_position('none')
ax2.get_yaxis().set_label_coords(-0.15, 0.5)
ax3.bar(df_outcrop.index, df_outcrop.F_Ap, color=col_Ap)
# ax3.set_ylim(0, 1.05*df_outcrop.F_Ap.max())
ax3.set_ylim(0, 1)
ax3.invert_yaxis()
ax3.set_ylabel('Apertures (mm)', color=col_Ap, fontsize=8)
ax3.set_xlabel('Fracture indices', fontsize=8)
ax3.get_yaxis().set_label_coords(-0.15, 0.5)
plt.suptitle('Outcrop of %s'%name, y=1.10, fontsize=10)
# fig5.tight_layout()
fig5.show()
fig5.savefig('Figure_05_BoxPlots_Outcrops_%s'%name, dpi=300)
#%%
# --- PART 4 - BoxPlots = CLASSES and RockType
#
#%% Box Plots & bi-histograms Per RockType:
# Here is a for loop creating a new df per Outcrop:
for RT in df2['Rock_Type'].unique():
df_rocktype = pd.DataFrame(df2.loc[df['Rock_Type'] == RT])
# Define Figure/plot specs
fig6 =plt.figure(figsize=(12,4),facecolor='w')
column = 3
row = 2
gs = gridspec.GridSpec(row,column)
gs.update(wspace=0.45 ,hspace=0)
# STEREOGRAM: Define subplots axes:
ax0 = plt.subplot(gs[:,0])
ax1 = plt.subplot(gs[:,1])
ax2 = plt.subplot(gs[0,2])
ax3 = plt.subplot(gs[1,2])
# Create an empty matrix HF((n_row, n_col)) where to store the data:
n_row = df_rocktype.shape[0]
n_col = df_rocktype['F_Class'].unique().shape[0]
HF_rocktype = np.empty((n_row, n_col))
HF_rocktype[:] = np.nan # fill the matrix with nan
AF_rocktype = np.empty((n_row, n_col))
AF_rocktype[:] = np.nan # fill the m
# X and Y are just here to control what is happening in the loop:
X = []
Y = []
column1 = 0
column2 = 0
# Exporting Quantiles as CSV file:
for R in df_rocktype['F_Class'].unique():
Ap_Quantile = (df_rocktype['F_Ap'][df_rocktype['F_Class'] == R ].quantile([0.1, 0.5, 0.9]))
H_Quantile = (df_rocktype['F_H'][df_rocktype['F_Class'] == R ].quantile([0.1, 0.5, 0.9]))
Stats_RT = pd.concat([Ap_Quantile, H_Quantile], axis=1)
Stats_RT.to_csv('Exp_RT_Quantiles' + RT + R + '.csv')
for F_rt in df_rocktype['F_Class'].unique():
rtF = df_rocktype.F_H.dropna()[df_rocktype['F_Class'] == F_rt]#.as_matrix()
m_row = rtF.shape[0]
HF_rocktype[0:m_row, column1] = rtF
column1 = column1 + 1
X.append(F_out)
Y.append(m_row)
HF_rocktype = pd.DataFrame(HF_rocktype, columns=df_rocktype['F_Class'].unique())
HF_rocktype.boxplot(ax=ax0, vert=True, patch_artist=None, showmeans=True, rot=90)
ax0.set_title('Boxplot of fracture heights per fracture class', fontsize=8)
ax0.set_ylim(-10, 50)
ax0.set_ylabel('Fracture Height', fontsize=8)
ax0.grid(None)
for F_rt in df_rocktype['F_Class'].unique():
rtF = df_rocktype.F_Ap.dropna()[df_rocktype['F_Class'] == F_rt]#.as_matrix()
m_row = rtF.shape[0]
AF_rocktype[0:m_row, column2] = rtF
column2 = column2 + 1
X.append(F_out)
Y.append(m_row)
AF_rocktype = pd.DataFrame(AF_rocktype, columns=df_rocktype['F_Class'].unique())
AF_rocktype.boxplot(ax=ax1, vert=True, patch_artist=None, showmeans=True, rot=90)
ax1.set_title('Boxplot of fracture Apertures per fracture class', fontsize=8)
# ax1.set_ylim(0.5, 1.05*df_outcrop.F_Ap.max())
ax1.set_ylim(-0.5, 2)
ax1.set_ylabel('Fracture Aperture', fontsize=8)
ax1.grid(None)
# Creating Now the Bi-Histogram:
ax2.bar(df_rocktype.index, df_rocktype['F_H'].dropna(), color=col_H)
ax2.set_ylim(0, 50)
ax2.set_ylabel('Heights (m)', color=col_H, fontsize=8)
ax2.xaxis.set_ticks_position('none')
ax2.get_yaxis().set_label_coords(-0.15, 0.5)
ax3.bar(df_rocktype.index, df_rocktype['F_Ap'].dropna(), color=col_Ap)
# ax2.set_ylim(0, 1.05*df_outcrop.F_Ap.max())
ax3.set_ylim(0, 1)
ax3.invert_yaxis()
ax3.set_ylabel('Apertures (mm)', color=col_Ap, fontsize=8)
ax3.set_xlabel('Fracture indices', fontsize=8)
ax3.get_yaxis().set_label_coords(-0.15, 0.5)
plt.suptitle('Rock type %s'%RT, y=1.10, fontsize=10)
# fig6.tight_layout()
fig6.show()
fig6.savefig('Figure_06_BoxPlots_RockTypes_%s'%RT, dpi=300)
#%%
# --- PART 5 - SCANLINE
#
#%% SCANLINE
# In df calculate (dX, DY) create new columns:
df['dX'] = np.sin(np.radians(df.Surf_Dir))*(df.m_out-df.m_in)
df['dY'] = np.cos(np.radians(df.Surf_Dir))*(df.m_out-df.m_in)
# This 'Conditions' tool is just to change colors with Fracture sets
conditions = [df['F_Class'] == 'F1', df['F_Class'] == 'F2', df['F_Class'] == 'F3', df['F_Class'] == 'F4', df['F_Class'] == 'F5', df['F_Class'] == 'F6', df['F_Class'] == 'F7']
choices = ['cyan', 'green', 'navy', 'red', 'violet', 'darkviolet', 'orange']
df['col'] = np.select(conditions, choices, default= 'black')
writer = df.col
# Here, creating the new column where to add coordinates:
df['Xin'] = np.nan
df['Yin'] = np.nan
df['Xout'] = np.nan
df['Yout'] = np.nan
# Here, I add a first row = 0 for (XY) at 0 = (00)
edd = df.iloc[0:1,:].copy(deep=True)
edd[:] = 0
edd.index = [0]
df = pd.concat([edd, df])
df = df.reset_index(drop=True)
for i in range (len(df['F_Az'])):
if df['F_Az'].iloc[i] > 180:
df['F_Az'].iloc[i] = df['F_Az'].iloc[i]-180
df['fx'] = np.sin(np.deg2rad(df['F_Az'])) * df['F_H']
df['fy'] = np.cos(np.deg2rad(df['F_Az'])) * df['F_H']
for name in df['Out_Code'].dropna().unique():
# print('OC name', name)
# Define Figure/plot specs
fig7 = plt.figure(figsize=(7,4))
row = 1
column = 1
gs = gridspec.GridSpec(row,column)
# Define subplots axes:
ax0 = plt.subplot(gs[0,0])
ax0 = fig7.add_subplot(gs[0,0])
# Tmp outcrop df:
df_outcrop = pd.DataFrame(df.loc[df['Out_Code'] == name])
edd = df_outcrop.iloc[0:1,:].copy(deep=True)
edd[:] = 0
edd.index = [0]
df_outcrop = pd.concat([edd, df_outcrop])
df_outcrop = df_outcrop.reset_index(drop=True)
# Find only the unique combination of m_in and m_out in outcrop df:
test = df_outcrop[['m_in','m_out']].drop_duplicates().copy(deep=True)
# get the indexes over which we have unique combinations
indexes = test.index.values.tolist()
# iterate over i calling the value of the indexes (indexes[i])
for i in range(len(indexes)-1):
df_outcrop['Xin'].iloc[[indexes[0]]] = 0
df_outcrop['Yin'].iloc[[indexes[0]]] = 0
df_outcrop['Xin'].iloc[[indexes[i+1]]] = df_outcrop['Xout'].iloc[[indexes[i]]].values
df_outcrop['Yin'].iloc[[indexes[i+1]]] = df_outcrop['Yout'].iloc[[indexes[i]]].values
df_outcrop['Xout'].iloc[[indexes[i+1]]] = df_outcrop['Xin'].iloc[[indexes[i+1]]].values + df_outcrop['dX'].iloc[[indexes[i+1]]].values
df_outcrop['Yout'].iloc[[indexes[i+1]]] = df_outcrop['Yin'].iloc[[indexes[i+1]]].values + df_outcrop['dY'].iloc[[indexes[i+1]]].values
df_outcrop['Xin'] = df_outcrop['Xin'].fillna(method='ffill')
df_outcrop['Yin'] = df_outcrop['Yin'].fillna(method='ffill')
df_outcrop['Xout'] = df_outcrop['Xout'].fillna(method='ffill')
df_outcrop['Yout'] = df_outcrop['Yout'].fillna(method='ffill')
for j in range(1, len(df_outcrop)):
df_outcrop['a'] = (df_outcrop['Xout'] - df_outcrop['Xin']) / (df_outcrop['Q'] + 1)
df_outcrop['b'] = (df_outcrop['Yout'] - df_outcrop['Yin']) / (df_outcrop['Q'] + 1)
for qi in range(1, df_outcrop['Q'][j]+1):
xo = df_outcrop['Xin'].iloc[j] + qi * df_outcrop['a'].loc[j]
yo = df_outcrop['Yin'].iloc[j] + qi * df_outcrop['b'].iloc[j]
ax0.quiver(xo, yo, df_outcrop['fx'].iloc[j], df_outcrop['fy'].iloc[j], color= df_outcrop['col'].iloc[j], width=0.001, headlength=0, headaxislength=0, scale=None)
ax0.quiver(xo, yo, -df_outcrop['fx'].iloc[j], -df_outcrop['fy'].iloc[j], color= df_outcrop['col'].iloc[j], width=0.001, headlength=0, headaxislength=0, scale=None)
# fig7.tight_layout()
ax0.plot(df_outcrop['Xout'], df_outcrop['Yout'], 'g')
# ax0.fill_between(df_outcrop['Xout'], df_outcrop['Yout'], df_outcrop['Yout'].max(), facecolor='tan', edgecolor='black', label='outcrop', alpha=.3)
ax0.set_xlabel('x [m]')
ax0.set_ylabel('y [m]')
ax0.grid()
ax0.axis('square')
ax0.set_title('ax0 Outcrop of %s'%name)
fig7.savefig('Figure_07_Scanline_%s'%name, dpi=300)
# plt.suptitle('PLT of %s'%name, y=1.10, fontsize=10)
# ax0.set_title('Fracture_Scanline')
print('*** ScanLine Done ***')
print()
#%%
# --- PART 5 B - SCANLINE to DFN
#
#%% SCANLINE
coord_xo = []
coord_yo = []
test_F_F = []
kink = pd.DataFrame(columns = ['coord_xo', 'coord_yo', 'F_F', 'F_Ap', 'F_H' ])
# In df calculate (dX, DY) create new columns:
df['dX'] = np.sin(np.radians(df.Surf_Dir))*(df.m_out-df.m_in)
df['dY'] = np.cos(np.radians(df.Surf_Dir))*(df.m_out-df.m_in)
# This 'Conditions' tool is just to change colors with Fracture sets
conditions = [df['F_Class'] == 'F1', df['F_Class'] == 'F2', df['F_Class'] == 'F3', df['F_Class'] == 'F4', df['F_Class'] == 'F5', df['F_Class'] == 'F6', df['F_Class'] == 'F7']
choices = ['cyan', 'green', 'navy', 'red', 'violet', 'darkviolet', 'orange']
df['col'] = np.select(conditions, choices, default= 'black')
writer = df.col
# Here, creating the new column where to add coordinates:
df['Xin'] = np.nan
df['Yin'] = np.nan
df['Xout'] = np.nan
df['Yout'] = np.nan
# Here, I add a first row = 0 for (XY) at 0 = (00)
edd = df.iloc[0:1,:].copy(deep=True)
edd[:] = 0
edd.index = [0]
df = pd.concat([edd, df])
df = df.reset_index(drop=True)
for i in range (len(df['F_Az'])):
if df['F_Az'].iloc[i] > 180:
df['F_Az'].iloc[i] = df['F_Az'].iloc[i]-180
df['fx'] = np.sin(np.deg2rad(df['F_Az'])) * df['F_H']
df['fy'] = np.cos(np.deg2rad(df['F_Az'])) * df['F_H']
for name in df['Out_Code'].dropna().unique():
# print('OC name', name)
# Define Figure/plot specs
fig8 = plt.figure(figsize=(7,4))
row = 1
column = 1
gs = gridspec.GridSpec(row,column)
# Define subplots axes:
ax0 = plt.subplot(gs[0,0])
ax0 = fig8.add_subplot(gs[0,0])
# Tmp outcrop df:
df_outcrop = pd.DataFrame(df.loc[df['Out_Code'] == name])
edd = df_outcrop.iloc[0:1,:].copy(deep=True)
edd[:] = 0
edd.index = [0]
df_outcrop = pd.concat([edd, df_outcrop])
df_outcrop = df_outcrop.reset_index(drop=True)
# Find only the unique combination of m_in and m_out in outcrop df:
test = df_outcrop[['m_in','m_out']].drop_duplicates().copy(deep=True)
# get the indexes over which we have unique combinations
indexes = test.index.values.tolist()
# iterate over i calling the value of the indexes (indexes[i])
for i in range(len(indexes)-1):
# print('i', i)
# print('indexes', indexes)
df_outcrop['Xin'].iloc[[indexes[0]]] = 0
df_outcrop['Yin'].iloc[[indexes[0]]] = 0
df_outcrop['Xin'].iloc[[indexes[i+1]]] = df_outcrop['Xout'].iloc[[indexes[i]]].values
df_outcrop['Yin'].iloc[[indexes[i+1]]] = df_outcrop['Yout'].iloc[[indexes[i]]].values
df_outcrop['Xout'].iloc[[indexes[i+1]]] = df_outcrop['Xin'].iloc[[indexes[i+1]]].values + df_outcrop['dX'].iloc[[indexes[i+1]]].values
df_outcrop['Yout'].iloc[[indexes[i+1]]] = df_outcrop['Yin'].iloc[[indexes[i+1]]].values + df_outcrop['dY'].iloc[[indexes[i+1]]].values
df_outcrop['Xin'] = df_outcrop['Xin'].fillna(method='ffill')
df_outcrop['Yin'] = df_outcrop['Yin'].fillna(method='ffill')
df_outcrop['Xout'] = df_outcrop['Xout'].fillna(method='ffill')
df_outcrop['Yout'] = df_outcrop['Yout'].fillna(method='ffill')
for j in range(1, len(df_outcrop)):
df_outcrop['a'] = (df_outcrop['Xout'] - df_outcrop['Xin']) / (df_outcrop['Q'] + 1)
df_outcrop['b'] = (df_outcrop['Yout'] - df_outcrop['Yin']) / (df_outcrop['Q'] + 1)
# print('j', j)
# print('a', df_outcrop.a.iloc[j])
# print('b', df_outcrop.b.iloc[j])
for qi in range(1, df_outcrop['Q'][j]+1):
xo = df_outcrop['Xin'].iloc[j] + qi * df_outcrop['a'].loc[j]
yo = df_outcrop['Yin'].iloc[j] + qi * df_outcrop['b'].iloc[j]
coord_xo = np.append(coord_xo, xo)
coord_yo = np.append(coord_yo, yo)
test_F_F = np.append(test_F_F, df_outcrop['F_F'].iloc[j] )
# ax0.quiver(xo, yo, df_outcrop['fx'].iloc[j], df_outcrop['fy'].iloc[j], color= df_outcrop['col'].iloc[j], width=0.001, linestyle= '--', headlength=0, headaxislength=0, scale=0.1)
# ax0.quiver(xo, yo, -df_outcrop['fx'].iloc[j], -df_outcrop['fy'].iloc[j], color= df_outcrop['col'].iloc[j], width=0.001, linestyle= '--', headlength=0, headaxislength=0, scale=0.1)
ax0.quiver(xo, yo, df_outcrop['fx'].iloc[j], df_outcrop['fy'].iloc[j], color= df_outcrop['col'].iloc[j], width=0.001, headlength=0, headaxislength=0, scale=0.1)
ax0.quiver(xo, yo, -df_outcrop['fx'].iloc[j], -df_outcrop['fy'].iloc[j], color= df_outcrop['col'].iloc[j], width=0.001, headlength=0, headaxislength=0, scale=0.1)
# fig8.tight_layout()
ax0.plot(df_outcrop['Xout'], df_outcrop['Yout'], 'g')
# ax0.fill_between(df_outcrop['Xout'], df_outcrop['Yout'], df_outcrop['Yout'].max(), facecolor='tan', edgecolor='black', label='outcrop', alpha=.3)
ax0.set_xlabel('x [m]')
ax0.set_ylabel('y [m]')
ax0.grid()
ax0.axis('square')
ax0.set_title('ax0 Outcrop of %s'%name)
fig8.savefig('Figure_08_Scanline_%s'%name, dpi=300)
# plt.suptitle('PLT of %s'%name, y=1.10, fontsize=10)
# ax0.set_title('Fracture_Scanline')
print('*** ScanLine Done ***')
print()
#%%
# --- PART 6 - DFN
#
#%% DFN
# In df calculate (dX, DY) create new columns:
df['dX'] = np.sin(np.radians(df.Surf_Dir))*(df.m_out-df.m_in)
df['dY'] = np.cos(np.radians(df.Surf_Dir))*(df.m_out-df.m_in)
# This is a short loop to give a color code based on F_Aperture ranges:
def Ap_class(row):
if row['F_Ap'] == 0:
return 'grey'
elif 0.001 <= row['F_Ap'] < 0.1:
return 'powderblue'
elif 0.01 <= row['F_Ap'] < 1:
return 'deepskyblue'
elif 1 <= row['F_Ap'] <= 5:
return 'mediumblue'
else:
return 'nan'
df = df.assign(coldfn=df.apply(Ap_class, axis=1))
df2 = df2.assign(coldfn=df.apply(Ap_class, axis=1))
#conditions = [df['F_Ap'] == 0, (0 < df['F_Ap'] < 0.1), (0.1 <= df['F_Ap'] < 1), (1 <= df['F_Ap'] <= 5)]
#conditions = [df['F_Ap'] == 0, df['F_Ap'] == (0.001:0.1), df['F_Ap'] == (0.1:1), df['F_Ap'] == (1:5)]
#choices = ['grey', 'deepskyblue']
#df['coldfn'] = np.select(conditions, choices, default= 'black')
#writer = df.col
# Here, creating the new column where to add coordinates:
df['Xin'] = np.nan
df['Yin'] = np.nan
df['Xout'] = np.nan
df['Yout'] = np.nan
# Here, I add a first row = 0 for (XY) at 0 = (00)
edd = df.iloc[0:1,:].copy(deep=True)
edd[:] = 0
edd.index = [0]
df = pd.concat([edd, df])
df = df.reset_index(drop=True)
for i in range (len(df['F_Az'])):
if df['F_Az'].iloc[i] > 180:
df['F_Az'].iloc[i] = df['F_Az'].iloc[i]-180
df['fxmean'] = np.sin(np.deg2rad(df['F_Az_mean'])) * df['F_H']
df['fymean'] = np.cos(np.deg2rad(df['F_Az_mean'])) * df['F_H']
for name in df['Out_Code'].dropna().unique():
# print('OC name', name)
# Define Figure/plot specs
fig9 = plt.figure(figsize=(7,4))
row = 1
column = 1
gs = gridspec.GridSpec(row,column)
# Define subplots axes:
ax0 = plt.subplot(gs[0,0])
ax0 = fig9.add_subplot(gs[0,0])
# Tmp outcrop df:
df_outcrop = pd.DataFrame(df.loc[df['Out_Code'] == name])
edd = df_outcrop.iloc[0:1,:].copy(deep=True)
edd[:] = 0
edd.index = [0]
df_outcrop = pd.concat([edd, df_outcrop])
df_outcrop = df_outcrop.reset_index(drop=True)
# Find only the unique combination of m_in and m_out in outcrop df:
test = df_outcrop[['m_in','m_out']].drop_duplicates().copy(deep=True)
# get the indexes over which we have unique combinations
indexes = test.index.values.tolist()
# iterate over i calling the value of the indexes (indexes[i])
for i in range(len(indexes)-1):
df_outcrop['Xin'].iloc[[indexes[0]]] = 0
df_outcrop['Yin'].iloc[[indexes[0]]] = 0
df_outcrop['Xin'].iloc[[indexes[i+1]]] = df_outcrop['Xout'].iloc[[indexes[i]]].values
df_outcrop['Yin'].iloc[[indexes[i+1]]] = df_outcrop['Yout'].iloc[[indexes[i]]].values
df_outcrop['Xout'].iloc[[indexes[i+1]]] = df_outcrop['Xin'].iloc[[indexes[i+1]]].values + df_outcrop['dX'].iloc[[indexes[i+1]]].values
df_outcrop['Yout'].iloc[[indexes[i+1]]] = df_outcrop['Yin'].iloc[[indexes[i+1]]].values + df_outcrop['dY'].iloc[[indexes[i+1]]].values
df_outcrop['Xin'] = df_outcrop['Xin'].fillna(method='ffill')
df_outcrop['Yin'] = df_outcrop['Yin'].fillna(method='ffill')
df_outcrop['Xout'] = df_outcrop['Xout'].fillna(method='ffill')
df_outcrop['Yout'] = df_outcrop['Yout'].fillna(method='ffill')
ax0.plot(df['Xout'], df['Yout'], 'k')
kinklist = []
for j in range(1, len(df_outcrop)):
df_outcrop['a'] = (df_outcrop['Xout'] - df_outcrop['Xin']) / (df_outcrop['Q'] + 1)
df_outcrop['b'] = (df_outcrop['Yout'] - df_outcrop['Yin']) / (df_outcrop['Q'] + 1)
for qi in range(1, df_outcrop['Q'][j]+1):
xo = df_outcrop['Xin'].iloc[j] + qi * df_outcrop['a'].loc[j]
yo = df_outcrop['Yin'].iloc[j] + qi * df_outcrop['b'].iloc[j]
kinklist.append({'xo': xo, 'yo': yo, 'MD': df_outcrop['Xout'].iloc[j], 'fx': df_outcrop['fx'].iloc[j], 'fy': df_outcrop['fy'].iloc[j], 'fxmean': df_outcrop['fxmean'].iloc[j], 'fymean': df_outcrop['fymean'].iloc[j], 'fH': df_outcrop['F_H'].iloc[j], 'fap': df_outcrop['F_Ap'].iloc[j], 'fazmean': df_outcrop['F_Az_mean'].iloc[j], 'faz': df_outcrop['F_Az'].iloc[j], 'fdipmean': df_outcrop['F_Dip_mean'].iloc[j], 'fdip': df_outcrop['F_Dip'].iloc[j], 'fapcol': df_outcrop['coldfn'].iloc[j], 'f_col': df_outcrop['col'].iloc[j], 'outCode': df_outcrop['Out_Code'].iloc[j], 'F_Class': df_outcrop['F_Class'].iloc[j]})
ax0.quiver(xo, yo, df_outcrop['fxmean'].iloc[j], df_outcrop['fymean'].iloc[j], color= df_outcrop['coldfn'].iloc[j], width=0.001, linestyle= '--', headlength=0, headaxislength=0, scale=0.1)
ax0.quiver(xo, yo, -df_outcrop['fxmean'].iloc[j], -df_outcrop['fymean'].iloc[j], color= df_outcrop['coldfn'].iloc[j], width=0.001, linestyle= '--', headlength=0, headaxislength=0, scale=0.1)
df_kink = pd.DataFrame.from_dict(kinklist)
# df_kink['x1'] = df_kink['xo'] + df_kink['fx']
# df_kink['y1'] = df_kink['yo'] + df_kink['fy']
df_kink.to_csv('kink' + str(name) + '.csv')
# fig9.tight_layout()
ax0.plot(df_outcrop['Xin'], df_outcrop['Yin'], 'g')
ax0.plot(df_outcrop['Xout'], df_outcrop['Yout'], 'g')
ax0.set_xlabel('x [m]')
ax0.set_ylabel('y [m]')
ax0.axis('square')
ax0.set_title('DFN for Outcrop %s'%name)
fig9.savefig('Figure_09_DFN_%s'%name, dpi=300)
fig9.savefig('Figure_09_DFN' + str(name) + '.svg')
tmp = pd.concat([df_outcrop['Xout'], df_outcrop['Yout']], axis=1)
tmp.to_csv('Scl_survey' + str(name) + '.csv')
# plt.suptitle('PLT of %s'%name, y=1.10, fontsize=10)
print('*** DFN Done ***')
print()
#%%
# --- PART 7 - Stereonets & Rose per outcrop
#
#%% STEREOPLOTS & ROSE DIAGRAM per ['Outcrop Name']!
# Here is a for loop going in F_Class and pick-out all different values: F1, F2,..F7 and Fnan:
for Outname in df2['Outcrop Name'].unique():
#for F in ['F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7']:
sF = df2.F_Az[df['Outcrop Name'] == Outname]
dF = df2.F_Dip[df['Outcrop Name'] == Outname]
# Define Figure/plot specs
fig10 = plt.figure(figsize=(7,4))
row = 1
column = 2
gs = gridspec.GridSpec(row,column)
# STEREOGRAM: Define subplots axes:
ax0 = plt.subplot(gs[0,0])
ax1 = plt.subplot(gs[0,1])
# STEREOGRAM: Density Contouring:
ax0 = fig10.add_subplot(gs[0,0], projection='stereonet')
ax0.plane(sF, dF, c='k', linewidth=0.1)
ax0.density_contourf(sF.dropna(), dF.dropna(), measurement='poles', cmap='Reds')
ax0.set_title('Steronet & Density contour of the Poles', y=1.10, fontsize=8, va='bottom')
ax0.grid()
# ROSE DIAGRAM: Calculate the number of strikes every 10° using np.hist
bin_edges = np.arange(-5, 366, 10)
number_of_strikes, bin_edges = np.histogram(sF.dropna(), bin_edges)
# ROSE DIAGRAM: Sum the last value with the first value.
number_of_strikes[0] += number_of_strikes[-1]
# ROSE DIAGRAM: Sum the first half 0-180° with the second half 180-360° to achieve the "mirrored behavior" of Rose Diagrams.
half = np.sum(np.split(number_of_strikes[:-1], 2), 0)
two_halves = np.concatenate([half, half])
# ROSE DIAGRAM: Create the Rose Diagram:
ax1 = fig10.add_subplot(gs[0,1], projection='polar')
ax1.bar(np.deg2rad(np.arange(0, 360, 10)), two_halves, width=np.deg2rad(10), bottom=0.0, color='.8', edgecolor='k')
ax1.set_theta_zero_location('N')
ax1.set_theta_direction(-1)
ax1.set_thetagrids(np.arange(0, 360, 45), labels=np.arange(0, 360, 45))
ax1.set_rgrids(np.arange(0, two_halves.max() + 1, 50), labels=None, fontsize=6)
ax1.set_title('Rose Diagram of the Fractures', y=1.10, fontsize=8, va='bottom')
plt.suptitle('Fracture set %s'%Outname, y=1.10, fontsize=10)
fig10.show()
fig10.savefig('Figure_10_SteroRoses_Outcrops_%s'%Outname, dpi=300)