-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsc-rna-reduce.cwl
803 lines (713 loc) · 25.2 KB
/
sc-rna-reduce.cwl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
cwlVersion: v1.0
class: CommandLineTool
requirements:
- class: InlineJavascriptRequirement
- class: EnvVarRequirement
envDef:
R_MAX_VSIZE: $((inputs.vector_memory_limit * 1000000000).toString())
hints:
- class: DockerRequirement
dockerPull: biowardrobe2/sc-tools:v0.0.13
inputs:
query_data_rds:
type: File
inputBinding:
prefix: "--query"
doc: |
Path to the RDS file to load Seurat object from. This file should include genes
expression information stored in the RNA assay.
datasets_metadata:
type: File?
inputBinding:
prefix: "--metadata"
doc: |
Path to the TSV/CSV file to optionally extend Seurat object metadata with
categorical values using samples identities. First column - 'library_id'
should correspond to all unique values from the 'new.ident' column of the
loaded Seurat object. If any of the provided in this file columns are already
present in the Seurat object metadata, they will be overwritten. When combined
with --barcodes parameter, first the metadata will be extended, then barcode
filtering will be applied.
Default: no extra metadata is added
barcodes_data:
type: File?
inputBinding:
prefix: "--barcodes"
doc: |
Path to the TSV/CSV file to optionally prefilter and
extend Seurat object metadata be selected barcodes.
First column should be named as 'barcode'. If file
includes any other columns they will be added to the
Seurat object metadata ovewriting the existing ones if
those are present.
Default: all cells used, no extra metadata is added
cell_cycle_data:
type: File?
inputBinding:
prefix: "--cellcycle"
doc: |
Path to the TSV/CSV file with the information for cell cycle score assignment.
First column - 'phase', second column 'gene_id'. If loaded Seurat object already
includes cell cycle scores in 'S.Score' and 'G2M.Score' metatada columns they will
be removed.
Default: skip cell cycle score assignment.
normalization_method:
type:
- "null"
- type: enum
symbols:
- "sct"
- "log"
- "sctglm"
inputBinding:
prefix: "--norm"
doc: |
Normalization method applied to genes expression counts. If loaded Seurat object
includes multiple datasets, normalization will be run independently for each of
them, unless integration is disabled with 'none' or set to 'harmony'
Default: sct
integration_method:
type:
- "null"
- type: enum
symbols:
- "seurat"
- "harmony"
- "none"
inputBinding:
prefix: "--ntgr"
doc: |
Integration method used for joint analysis of multiple datasets. Automatically
set to 'none' if loaded Seurat object includes only one dataset.
Default: seurat
integrate_by:
type:
- "null"
- string
- string[]
inputBinding:
prefix: "--ntgrby"
doc: |
Column(s) from the Seurat object metadata to define the variable(s) that should
be integrated out when running multiple datasets integration with harmony. May
include columns from the extra metadata added with --metadata parameter. Ignored
if --ntgr is not set to harmony.
Default: new.ident
highly_var_genes_count:
type: int?
inputBinding:
prefix: "--highvargenes"
doc: |
Number of highly variable genes used in datasets integration, scaling and
dimensionality reduction.
Default: 3000
regress_mito_perc:
type: boolean?
inputBinding:
prefix: "--regressmt"
doc: |
Regress the percentage of transcripts mapped to mitochondrial genes as a
confounding source of variation.
Default: false
regress_genes:
type:
- "null"
- string
- string[]
inputBinding:
prefix: "--regressgenes"
doc: |
Genes which expression should be regressed as a confounding source of variation.
Default: None
regress_cellcycle:
type: boolean?
inputBinding:
prefix: "--regresscellcycle"
doc: |
Regress cell cycle scores as a confounding source of variation.
Ignored if --cellcycle is not provided.
Default: false
dimensions:
type:
- "null"
- int
- int[]
inputBinding:
prefix: "--dimensions"
doc: |
Dimensionality to use in UMAP projection (from 1 to 50). If single value N
is provided, use from 1 to N PCs. If multiple values are provided, subset to
only selected PCs. In combination with --ntgr set to harmony, selected principle
components will be used in Harmony integration.
Default: from 1 to 10
umap_spread:
type: float?
inputBinding:
prefix: "--uspread"
doc: |
The effective scale of embedded points on UMAP. In combination with '--mindist'
it determines how clustered/clumped the embedded points are.
Default: 1
umap_mindist:
type: float?
inputBinding:
prefix: "--umindist"
doc: |
Controls how tightly the embedding is allowed compress points together on UMAP.
Larger values ensure embedded points are moreevenly distributed, while smaller
values allow the algorithm to optimise more accurately with regard to local structure.
Sensible values are in the range 0.001 to 0.5.
Default: 0.3
umap_neighbors:
type: int?
inputBinding:
prefix: "--uneighbors"
doc: |
Determines the number of neighboring points used in UMAP. Larger values will result
in more global structure being preserved at the loss of detailed local structure.
In general this parameter should often be in the range 5 to 50.
Default: 30
umap_metric:
type:
- "null"
- type: enum
symbols:
- "euclidean"
- "manhattan"
- "chebyshev"
- "minkowski"
- "canberra"
- "braycurtis"
- "mahalanobis"
- "wminkowski"
- "seuclidean"
- "cosine"
- "correlation"
- "haversine"
- "hamming"
- "jaccard"
- "dice"
- "russelrao"
- "kulsinski"
- "ll_dirichlet"
- "hellinger"
- "rogerstanimoto"
- "sokalmichener"
- "sokalsneath"
- "yule"
inputBinding:
prefix: "--umetric"
doc: |
The metric to use to compute distances in high dimensional space for UMAP.
Default: cosine
umap_method:
type:
- "null"
- type: enum
symbols:
- "uwot"
- "uwot-learn"
- "umap-learn"
inputBinding:
prefix: "--umethod"
doc: |
UMAP implementation to run. If set to 'umap-learn' use --umetric 'correlation'
Default: uwot
export_pdf_plots:
type: boolean?
inputBinding:
prefix: "--pdf"
doc: |
Export plots in PDF.
Default: false
color_theme:
type:
- "null"
- type: enum
symbols:
- "gray"
- "bw"
- "linedraw"
- "light"
- "dark"
- "minimal"
- "classic"
- "void"
inputBinding:
prefix: "--theme"
doc: |
Color theme for all generated plots. One of gray, bw, linedraw, light,
dark, minimal, classic, void.
Default: classic
verbose:
type: boolean?
inputBinding:
prefix: "--verbose"
doc: |
Print debug information.
Default: false
export_h5seurat_data:
type: boolean?
inputBinding:
prefix: "--h5seurat"
doc: |
Save Seurat data to h5seurat file.
Default: false
export_h5ad_data:
type: boolean?
inputBinding:
prefix: "--h5ad"
doc: |
Save Seurat data to h5ad file.
Default: false
export_ucsc_cb:
type: boolean?
inputBinding:
prefix: "--cbbuild"
doc: |
Export results to UCSC Cell Browser. Default: false
low_memory:
type: boolean?
inputBinding:
prefix: "--lowmem"
doc: |
Attempts to minimize RAM usage when integrating multiple datasets
with SCTransform algorithm (slows down the computation). Ignored if
'--ntgr' is not set to 'seurat' or if '--norm' is not set to either
'sct' or 'sctglm'.
Default: false
output_prefix:
type: string?
inputBinding:
prefix: "--output"
doc: |
Output prefix.
Default: ./sc
parallel_memory_limit:
type: int?
inputBinding:
prefix: "--memory"
doc: |
Maximum memory in GB allowed to be shared between the workers
when using multiple --cpus.
Default: 32
vector_memory_limit:
type: int?
default: 128
doc: |
Maximum vector memory in GB allowed to be used by R.
Default: 128
threads:
type: int?
inputBinding:
prefix: "--cpus"
doc: |
Number of cores/cpus to use.
Default: 1
outputs:
elbow_plot_png:
type: File?
outputBinding:
glob: "*_elbow.png"
doc: |
Elbow plot (from cells PCA).
PNG format
elbow_plot_pdf:
type: File?
outputBinding:
glob: "*_elbow.pdf"
doc: |
Elbow plot (from cells PCA).
PDF format
qc_dim_corr_plot_png:
type: File?
outputBinding:
glob: "*_qc_dim_corr.png"
doc: |
Correlation plots between QC metrics and cells PCA components.
PNG format
qc_dim_corr_plot_pdf:
type: File?
outputBinding:
glob: "*_qc_dim_corr.pdf"
doc: |
Correlation plots between QC metrics and cells PCA components.
PDF format
umap_qc_mtrcs_plot_png:
type: File?
outputBinding:
glob: "*_umap_qc_mtrcs.png"
doc: |
QC metrics on cells UMAP.
PNG format
umap_qc_mtrcs_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_qc_mtrcs.pdf"
doc: |
QC metrics on cells UMAP.
PDF format
umap_plot_png:
type: File?
outputBinding:
glob: "*_umap.png"
doc: |
Cells UMAP.
PNG format
umap_plot_pdf:
type: File?
outputBinding:
glob: "*_umap.pdf"
doc: |
Cells UMAP.
PDF format
umap_spl_ph_plot_png:
type: File?
outputBinding:
glob: "*_umap_spl_ph.png"
doc: |
Split by cell cycle phase cells UMAP.
PNG format
umap_spl_ph_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_spl_ph.pdf"
doc: |
Split by cell cycle phase cells UMAP.
PDF format
umap_spl_mito_plot_png:
type: File?
outputBinding:
glob: "*_umap_spl_mito.png"
doc: |
Split by the percentage of transcripts mapped to mitochondrial genes cells UMAP.
PNG format
umap_spl_mito_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_spl_mito.pdf"
doc: |
Split by the percentage of transcripts mapped to mitochondrial genes cells UMAP.
PDF format
umap_spl_umi_plot_png:
type: File?
outputBinding:
glob: "*_umap_spl_umi.png"
doc: |
Split by the UMI per cell counts cells UMAP.
PNG format
umap_spl_umi_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_spl_umi.pdf"
doc: |
Split by the UMI per cell counts cells UMAP.
PDF format
umap_spl_gene_plot_png:
type: File?
outputBinding:
glob: "*_umap_spl_gene.png"
doc: |
Split by the genes per cell counts cells UMAP.
PNG format
umap_spl_gene_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_spl_gene.pdf"
doc: |
Split by the genes per cell counts cells UMAP.
PDF format
umap_spl_idnt_plot_png:
type: File?
outputBinding:
glob: "*_umap_spl_idnt.png"
doc: |
Split by dataset cells UMAP.
PNG format
umap_spl_idnt_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_spl_idnt.pdf"
doc: |
Split by dataset cells UMAP.
PDF format
umap_spl_cnd_plot_png:
type: File?
outputBinding:
glob: "*_umap_spl_cnd.png"
doc: |
Split by grouping condition cells UMAP.
PNG format
umap_spl_cnd_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_spl_cnd.pdf"
doc: |
Split by grouping condition cells UMAP.
PDF format
umap_gr_cnd_spl_ph_plot_png:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_ph.png"
doc: |
Grouped by condition split by cell cycle cells UMAP.
PNG format
umap_gr_cnd_spl_ph_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_ph.pdf"
doc: |
Grouped by condition split by cell cycle cells UMAP.
PDF format
umap_gr_cnd_spl_mito_plot_png:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_mito.png"
doc: |
Grouped by condition split by the percentage of transcripts mapped to mitochondrial genes cells UMAP.
PNG format
umap_gr_cnd_spl_mito_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_mito.pdf"
doc: |
Grouped by condition split by the percentage of transcripts mapped to mitochondrial genes cells UMAP.
PDF format
umap_gr_cnd_spl_umi_plot_png:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_umi.png"
doc: |
Grouped by condition split by the UMI per cell counts cells UMAP.
PNG format
umap_gr_cnd_spl_umi_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_umi.pdf"
doc: |
Grouped by condition split by the UMI per cell counts cells UMAP.
PDF format
umap_gr_cnd_spl_gene_plot_png:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_gene.png"
doc: |
Grouped by condition split by the genes per cell counts cells UMAP.
PNG format
umap_gr_cnd_spl_gene_plot_pdf:
type: File?
outputBinding:
glob: "*_umap_gr_cnd_spl_gene.pdf"
doc: |
Grouped by condition split by the genes per cell counts cells UMAP.
PDF format
ucsc_cb_config_data:
type: Directory?
outputBinding:
glob: "*_cellbrowser"
doc: |
Directory with UCSC Cellbrowser configuration data.
ucsc_cb_html_data:
type: Directory?
outputBinding:
glob: "*_cellbrowser/html_data"
doc: |
Directory with UCSC Cellbrowser html data.
ucsc_cb_html_file:
type: File?
outputBinding:
glob: "*_cellbrowser/html_data/index.html"
doc: |
HTML index file from the directory with UCSC Cellbrowser html data.
seurat_data_rds:
type: File
outputBinding:
glob: "*_data.rds"
doc: |
Reduced Seurat data in RDS format
seurat_data_h5seurat:
type: File?
outputBinding:
glob: "*_data.h5seurat"
doc: |
Reduced Seurat data in h5seurat format
seurat_data_h5ad:
type: File?
outputBinding:
glob: "*_data.h5ad"
doc: |
Reduced Seurat data in h5ad format
stdout_log:
type: stdout
stderr_log:
type: stderr
baseCommand: ["sc_rna_reduce.R"]
stdout: sc_rna_reduce_stdout.log
stderr: sc_rna_reduce_stderr.log
$namespaces:
s: http://schema.org/
$schemas:
- https://github.com/schemaorg/schemaorg/raw/main/data/releases/11.01/schemaorg-current-http.rdf
label: "Single-cell RNA-Seq Dimensionality Reduction Analysis"
s:name: "Single-cell RNA-Seq Dimensionality Reduction Analysis"
s:alternateName: "Integrates multiple single-cell RNA-Seq datasets, reduces dimensionality using PCA"
s:downloadUrl: https://raw.githubusercontent.com/Barski-lab/workflows/master/tools/sc-rna-reduce.cwl
s:codeRepository: https://github.com/Barski-lab/workflows
s:license: http://www.apache.org/licenses/LICENSE-2.0
s:isPartOf:
class: s:CreativeWork
s:name: Common Workflow Language
s:url: http://commonwl.org/
s:creator:
- class: s:Organization
s:legalName: "Cincinnati Children's Hospital Medical Center"
s:location:
- class: s:PostalAddress
s:addressCountry: "USA"
s:addressLocality: "Cincinnati"
s:addressRegion: "OH"
s:postalCode: "45229"
s:streetAddress: "3333 Burnet Ave"
s:telephone: "+1(513)636-4200"
s:logo: "https://www.cincinnatichildrens.org/-/media/cincinnati%20childrens/global%20shared/childrens-logo-new.png"
s:department:
- class: s:Organization
s:legalName: "Allergy and Immunology"
s:department:
- class: s:Organization
s:legalName: "Barski Research Lab"
s:member:
- class: s:Person
s:name: Michael Kotliar
s:email: mailto:[email protected]
s:sameAs:
- id: http://orcid.org/0000-0002-6486-3898
doc: |
Single-cell RNA-Seq Dimensionality Reduction Analysis
Integrates multiple single-cell RNA-Seq datasets, reduces dimensionality using PCA.
s:about: |
usage: sc_rna_reduce.R [-h] --query QUERY [--metadata METADATA]
[--barcodes BARCODES]
[--cellcycle CELLCYCLE]
[--norm {sct,log,sctglm}]
[--ntgr {seurat,harmony,none}]
[--ntgrby [NTGRBY [NTGRBY ...]]]
[--highvargenes HIGHVARGENES]
[--regressmt]
[--regressgenes [REGRESSGENES [REGRESSGENES ...]]]
[--regresscellcycle]
[--dimensions [DIMENSIONS [DIMENSIONS ...]]]
[--uspread USPREAD]
[--umindist UMINDIST]
[--uneighbors UNEIGHBORS]
[--umetric {euclidean,manhattan,chebyshev,minkowski,canberra,braycurtis,mahalanobis,wminkowski,seuclidean,cosine,correlation,haversine,hamming,jaccard,dice,russelrao,kulsinski,ll_dirichlet,hellinger,rogerstanimoto,sokalmichener,sokalsneath,yule}]
[--umethod {uwot,uwot-learn,umap-learn}]
[--pdf] [--verbose] [--h5seurat]
[--h5ad] [--cbbuild] [--lowmem]
[--output OUTPUT]
[--theme {gray,bw,linedraw,light,dark,minimal,classic,void}]
[--cpus CPUS] [--memory MEMORY]
Single-cell RNA-Seq Dimensionality Reduction Analysis
optional arguments:
-h, --help show this help message and exit
--query QUERY Path to the RDS file to load Seurat object from. This
file should include genes expression information
stored in the RNA assay.
--metadata METADATA Path to the TSV/CSV file to optionally extend Seurat
object metadata with categorical values using samples
identities. First column - 'library_id' should
correspond to all unique values from the 'new.ident'
column of the loaded Seurat object. If any of the
provided in this file columns are already present in
the Seurat object metadata, they will be overwritten.
When combined with --barcodes parameter, first the
metadata will be extended, then barcode filtering will
be applied. Default: no extra metadata is added
--barcodes BARCODES Path to the TSV/CSV file to optionally prefilter and
extend Seurat object metadata be selected barcodes.
First column should be named as 'barcode'. If file
includes any other columns they will be added to the
Seurat object metadata ovewriting the existing ones if
those are present. Default: all cells used, no extra
metadata is added
--cellcycle CELLCYCLE
Path to the TSV/CSV file with the information for cell
cycle score assignment. First column - 'phase', second
column 'gene_id'. If loaded Seurat object already
includes cell cycle scores in 'S.Score' and
'G2M.Score' metatada columns they will be removed.
Default: skip cell cycle score assignment.
--norm {sct,log,sctglm}
Normalization method applied to genes expression
counts. If loaded Seurat object includes multiple
datasets, normalization will be run independently for
each of them, unless integration is disabled with
'none' or set to 'harmony' Default: sct
--ntgr {seurat,harmony,none}
Integration method used for joint analysis of multiple
datasets. Automatically set to 'none' if loaded Seurat
object includes only one dataset. Default: seurat
--ntgrby [NTGRBY [NTGRBY ...]]
Column(s) from the Seurat object metadata to define
the variable(s) that should be integrated out when
running multiple datasets integration with harmony.
May include columns from the extra metadata added with
--metadata parameter. Ignored if --ntgr is not set to
harmony. Default: new.ident
--highvargenes HIGHVARGENES
Number of highly variable genes used in datasets
integration, scaling and dimensionality reduction.
Default: 3000
--regressmt Regress the percentage of transcripts mapped to
mitochondrial genes as a confounding source of
variation. Default: false
--regressgenes [REGRESSGENES [REGRESSGENES ...]]
Genes which expression should be regressed as a
confounding source of variation. Default: None
--regresscellcycle Regress cell cycle scores as a confounding source of
variation. Ignored if --cellcycle is not provided.
Default: false
--dimensions [DIMENSIONS [DIMENSIONS ...]]
Dimensionality to use in UMAP projection (from 1 to
50). If single value N is provided, use from 1 to N
PCs. If multiple values are provided, subset to only
selected PCs. In combination with --ntgr set to
harmony, selected principle components will be used in
Harmony integration. Default: from 1 to 10
--uspread USPREAD The effective scale of embedded points on UMAP. In
combination with '--mindist' it determines how
clustered/clumped the embedded points are. Default: 1
--umindist UMINDIST Controls how tightly the embedding is allowed compress
points together on UMAP. Larger values ensure embedded
points are moreevenly distributed, while smaller
values allow the algorithm to optimise more accurately
with regard to local structure. Sensible values are in
the range 0.001 to 0.5. Default: 0.3
--uneighbors UNEIGHBORS
Determines the number of neighboring points used in
UMAP. Larger values will result in more global
structure being preserved at the loss of detailed
local structure. In general this parameter should
often be in the range 5 to 50. Default: 30
--umetric {euclidean,manhattan,chebyshev,minkowski,canberra,braycurtis,mahalanobis,wminkowski,seuclidean,cosine,correlation,haversine,hamming,jaccard,dice,russelrao,kulsinski,ll_dirichlet,hellinger,rogerstanimoto,sokalmichener,sokalsneath,yule}
The metric to use to compute distances in high
dimensional space for UMAP. Default: cosine
--umethod {uwot,uwot-learn,umap-learn}
UMAP implementation to run. If set to 'umap-learn' use
--umetric 'correlation' Default: uwot
--pdf Export plots in PDF. Default: false
--verbose Print debug information. Default: false
--h5seurat Save Seurat data to h5seurat file. Default: false
--h5ad Save Seurat data to h5ad file. Default: false
--cbbuild Export results to UCSC Cell Browser. Default: false
--lowmem Attempts to minimize RAM usage when integrating
multiple datasets with SCTransform algorithm (slows
down the computation). Ignored if '--ntgr' is not set
to 'seurat' or if '--norm' is not set to either 'sct'
or 'sctglm'. Default: false
--output OUTPUT Output prefix. Default: ./sc
--theme {gray,bw,linedraw,light,dark,minimal,classic,void}
Color theme for all generated plots. Default: classic
--cpus CPUS Number of cores/cpus to use. Default: 1
--memory MEMORY Maximum memory in GB allowed to be shared between the
workers when using multiple --cpus. Default: 32