-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathtest_viewport.py
130 lines (109 loc) · 4.78 KB
/
test_viewport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
import pyredner_tensorflow as pyredner
# From the test_single_triangle.py test case but with viewport
# Use GPU if available
pyredner.set_use_gpu(tf.test.is_gpu_available(cuda_only=True, min_cuda_compute_capability=None))
with tf.device('/device:cpu:' + str(pyredner.get_cpu_device_id())):
cam = pyredner.Camera(position = tf.Variable([0.0, 0.0, -5.0], dtype=tf.float32),
look_at = tf.Variable([0.0, 0.0, 0.0], dtype=tf.float32),
up = tf.Variable([0.0, 1.0, 0.0], dtype=tf.float32),
fov = tf.Variable([45.0], dtype=tf.float32), # in degree
clip_near = 1e-2, # needs to > 0
resolution = (1024, 1024),
viewport = (200, 300, 700, 800))
with tf.device(pyredner.get_device_name()):
mat_grey = pyredner.Material(
diffuse_reflectance = tf.Variable([0.5, 0.5, 0.5], dtype=tf.float32))
materials = [mat_grey]
with tf.device(pyredner.get_device_name()):
shape_triangle = pyredner.Shape(
vertices = tf.Variable([[-1.7, 1.0, 0.0], [1.0, 1.0, 0.0], [-0.5, -1.0, 0.0]],
dtype=tf.float32),
indices = tf.constant([[0, 1, 2]], dtype=tf.int32),
uvs = None,
normals = None,
material_id = 0)
shape_light = pyredner.Shape(
vertices = tf.Variable([[-1.0, -1.0, -7.0],
[ 1.0, -1.0, -7.0],
[-1.0, 1.0, -7.0],
[ 1.0, 1.0, -7.0]], dtype=tf.float32),
indices = tf.constant([[0, 1, 2],[1, 3, 2]], dtype=tf.int32),
uvs = None,
normals = None,
material_id = 0)
shapes = [shape_triangle, shape_light]
with tf.device('/device:cpu:' + str(pyredner.get_cpu_device_id())):
light = pyredner.AreaLight(shape_id = 1,
intensity = tf.Variable([20.0,20.0,20.0], dtype=tf.float32))
area_lights = [light]
scene = pyredner.Scene(cam, shapes, materials, area_lights)
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 16,
max_bounces = 1)
img = pyredner.render(0, *scene_args)
pyredner.imwrite(img, 'results/test_single_triangle/target.exr')
pyredner.imwrite(img, 'results/test_single_triangle/target.png')
target = pyredner.imread('results/test_single_triangle/target.exr')
if pyredner.get_use_gpu():
target = target.gpu()
with tf.device(pyredner.get_device_name()):
shape_triangle.vertices = tf.Variable(
[[-2.0,1.5,0.3], [0.9,1.2,-0.3], [-0.4,-1.4,0.2]],
dtype=tf.float32,
trainable=True) # Set trainable to True since we want to optimize this
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 16,
max_bounces = 1)
img = pyredner.render(1, *scene_args)
pyredner.imwrite(img, 'results/test_single_triangle/init.png')
diff = tf.abs(target - img)
pyredner.imwrite(diff, 'results/test_single_triangle/init_diff.png')
optimizer = tf.compat.v1.train.AdamOptimizer(5e-2)
def loss(output, target):
error = output - target
return tf.reduce_sum(tf.square(error))
def optimize(scene_args, grads, lr=5e-2):
updates = []
for var, grad in zip(scene_args, grads):
if grad is None:
updates.append(var)
continue
updates.append(var - lr * grad)
return updates
# Run 200 Adam iterations.
for t in range(1, 201):
print('iteration:', t)
with tf.GradientTape() as tape:
# Forward pass: render the image.
# Important to use a different seed every iteration, otherwise the result
# would be biased.
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 4, # We use less samples in the Adam loop.
max_bounces = 1)
img = pyredner.render(t, *scene_args)
loss_value = loss(img, target)
print(f"loss_value: {loss_value}")
pyredner.imwrite(img, 'results/test_single_triangle/iter_{}.png'.format(t))
grads = tape.gradient(loss_value, [shape_triangle.vertices])
optimizer.apply_gradients(zip(grads, [shape_triangle.vertices]))
print('grad:', grads[0])
print('vertices:', shape_triangle.vertices)
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 16,
max_bounces = 1)
img = pyredner.render(202, *scene_args)
pyredner.imwrite(img, 'results/test_single_triangle/final.exr')
pyredner.imwrite(img, 'results/test_single_triangle/final.png')
pyredner.imwrite(tf.abs(target - img), 'results/test_single_triangle/final_diff.png')
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
"results/test_single_triangle/iter_%d.png", "-vb", "20M",
"results/test_single_triangle/out.mp4"])