-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathtest_shadow_receiver.py
124 lines (107 loc) · 4.8 KB
/
test_shadow_receiver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
# Tensorflow by default allocates all GPU memory, leaving very little for rendering.
# We set the environment variable TF_FORCE_GPU_ALLOW_GROWTH to true to enforce on demand
# memory allocation to reduce page faults.
import os
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
import tensorflow as tf
tf.compat.v1.enable_eager_execution()
import pyredner_tensorflow as pyredner
# Optimize four vertices of a shadow receiver
# Use GPU if available
pyredner.set_use_gpu(tf.test.is_gpu_available(cuda_only=True, min_cuda_compute_capability=None))
# Set up the scene
with tf.device('/device:cpu:' + str(pyredner.get_cpu_device_id())):
position = tf.Variable([0.0, 2.0, -5.0], dtype=tf.float32)
look_at = tf.Variable([0.0, 0.0, 0.0], dtype=tf.float32)
up = tf.Variable([0.0, 1.0, 0.0], dtype=tf.float32)
fov = tf.Variable([45.0], dtype=tf.float32)
clip_near = 1e-2
resolution = (256, 256)
cam = pyredner.Camera(position = position,
look_at = look_at,
up = up,
fov = fov,
clip_near = clip_near,
resolution = resolution)
with tf.device(pyredner.get_device_name()):
mat_grey = pyredner.Material(
diffuse_reflectance = tf.Variable([0.5, 0.5, 0.5], dtype=tf.float32))
mat_black = pyredner.Material(
diffuse_reflectance = tf.Variable([0.0, 0.0, 0.0], dtype=tf.float32))
materials = [mat_grey, mat_black]
floor_vertices = tf.Variable([[-2.0,0.0,-2.0],[-2.0,0.0,2.0],[2.0,0.0,-2.0],[2.0,0.0,2.0]],
dtype=tf.float32)
floor_indices = tf.constant([[0,1,2], [1,3,2]], dtype=tf.int32)
shape_floor = pyredner.Shape(floor_vertices, floor_indices, 0)
blocker_vertices = tf.Variable([[-0.5,3.0,-0.5],[-0.5,3.0,0.5],[0.5,3.0,-0.5],[0.5,3.0,0.5]],
dtype=tf.float32)
blocker_indices = tf.constant([[0,1,2], [1,3,2]], dtype=tf.int32)
shape_blocker = pyredner.Shape(blocker_vertices, blocker_indices, 0)
light_vertices = tf.Variable([[-0.1,5,-0.1],[-0.1,5,0.1],[0.1,5,-0.1],[0.1,5,0.1]],
dtype=tf.float32)
light_indices = tf.constant([[0,2,1], [1,2,3]], dtype=tf.int32)
shape_light = pyredner.Shape(light_vertices, light_indices, 1)
shapes = [shape_floor, shape_blocker, shape_light]
with tf.device('/device:cpu:' + str(pyredner.get_cpu_device_id())):
light_intensity = tf.Variable([1000.0, 1000.0, 1000.0], dtype=tf.float32)
# The first argument is the shape id of the light
light = pyredner.AreaLight(2, light_intensity)
area_lights = [light]
scene = pyredner.Scene(cam, shapes, materials, area_lights)
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 256,
max_bounces = 1)
# Alias of the render function
# Render our target
img = pyredner.render(0, *scene_args)
pyredner.imwrite(img, 'results/test_shadow_receiver/target.exr')
pyredner.imwrite(img, 'results/test_shadow_receiver/target.png')
target = pyredner.imread('results/test_shadow_receiver/target.exr')
# Perturb the scene, this is our initial guess
with tf.device(pyredner.get_device_name()):
shape_floor.vertices = tf.Variable(
[[-2.0,-0.2,-2.0],[-2.0,-0.2,2.0],[2.0,-0.2,-2.0],[2.0,-0.2,2.0]],
trainable=True)
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 256,
max_bounces = 1)
# Render the initial guess
img = pyredner.render(1, *scene_args)
pyredner.imwrite(img, 'results/test_shadow_receiver/init.png')
diff = tf.abs(target - img)
pyredner.imwrite(diff, 'results/test_shadow_receiver/init_diff.png')
# Optimize for blocker vertices
# optimizer = torch.optim.Adam([shape_floor.vertices], lr=1e-2)
optimizer = tf.compat.v1.train.AdamOptimizer(1e-2)
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 4,
max_bounces = 1)
for t in range(200):
print('iteration:', t)
with tf.GradientTape() as tape:
# Forward pass: render the image
img = pyredner.render(t+1, *scene_args)
pyredner.imwrite(img, 'results/test_shadow_receiver/iter_{}.png'.format(t))
loss = tf.reduce_sum(tf.square(img - target))
print('loss:', loss)
grads = tape.gradient(loss, [shape_floor.vertices])
optimizer.apply_gradients(
zip(grads, [shape_floor.vertices])
)
print('grad:', grads[0])
print('vertices:', shape_floor.vertices)
scene_args = pyredner.serialize_scene(
scene = scene,
num_samples = 256,
max_bounces = 1)
img = pyredner.render(202, *scene_args)
pyredner.imwrite(img, 'results/test_shadow_receiver/final.exr')
pyredner.imwrite(img, 'results/test_shadow_receiver/final.png')
pyredner.imwrite(tf.abs(target - img), 'results/test_shadow_receiver/final_diff.png')
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
"results/test_shadow_receiver/iter_%d.png", "-vb", "20M",
"results/test_shadow_receiver/out.mp4"])