-
Notifications
You must be signed in to change notification settings - Fork 140
/
Copy pathsetup.py
186 lines (171 loc) · 8.38 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Adapted from https://github.com/pybind/cmake_example/blob/master/setup.py
import os
import re
import sys
import platform
import subprocess
import importlib
from sysconfig import get_paths
from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext
from setuptools.command.install import install
from distutils.sysconfig import get_config_var
from distutils.version import LooseVersion
class RemoveOldRednerBeforeInstall(install):
def run(self):
# Remove old redner packages installed by distutils
from distutils import sysconfig as sc
site_packages_dir = sc.get_python_lib()
import shutil
import glob
egg_info_path = glob.glob(os.path.join(site_packages_dir, 'redner-0.0.1-*.egg-info'))
for p in egg_info_path:
try:
os.remove(p)
except:
print('Warning: detect old redner installation file {} and could not remove it. You may want to remove the file manually.'.format(p))
install.run(self)
class CMakeExtension(Extension):
def __init__(self, name, sourcedir, build_with_cuda):
Extension.__init__(self, name, sources=[])
self.sourcedir = os.path.abspath(sourcedir)
self.build_with_cuda = build_with_cuda
class CopyExtension(Extension):
def __init__(self, name, filename_list):
Extension.__init__(self, name, sources=[])
self.filename_list = filename_list
class Build(build_ext):
def run(self):
try:
out = subprocess.check_output(['cmake', '--version'])
except OSError:
raise RuntimeError("CMake must be installed to build the following extensions: " +
", ".join(e.name for e in self.extensions))
super().run()
def build_extension(self, ext):
if isinstance(ext, CMakeExtension):
extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name)))
info = get_paths()
include_path = info['include']
cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir,
'-DPYTHON_INCLUDE_PATH=' + include_path]
cfg = 'Debug' if self.debug else 'Release'
build_args = ['--config', cfg]
if platform.system() == "Windows":
cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir),
'-DCMAKE_RUNTIME_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir)]
if sys.maxsize > 2**32:
cmake_args += ['-A', 'x64']
build_args += ['--', '/m']
else:
cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg]
build_args += ['--', '-j8']
if ext.build_with_cuda:
cmake_args += ['-DREDNER_CUDA=1']
env = os.environ.copy()
env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format(env.get('CXXFLAGS', ''),
self.distribution.get_version())
if not os.path.exists(self.build_temp):
os.makedirs(self.build_temp)
subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env)
subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp)
elif isinstance(ext, CopyExtension):
extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name)))
# Copy the files to extdir
from shutil import copy
for f in ext.filename_list:
print('Copying {} to {}'.format(f, extdir))
copy(f, extdir)
else:
super().build_extension(ext)
torch_spec = importlib.util.find_spec("torch")
tf_spec = importlib.util.find_spec("tensorflow")
packages = []
build_with_cuda = False
if torch_spec is not None:
packages.append('pyredner')
import torch
if torch.cuda.is_available():
build_with_cuda = True
if tf_spec is not None and sys.platform != 'win32':
packages.append('pyredner_tensorflow')
if not build_with_cuda:
import tensorflow as tf
if tf.test.is_gpu_available(cuda_only=True, min_cuda_compute_capability=None):
build_with_cuda = True
if len(packages) == 0:
print('Error: PyTorch or Tensorflow must be installed. For Windows platform only PyTorch is supported.')
exit()
# Override build_with_cuda with environment variable
if 'REDNER_CUDA' in os.environ:
build_with_cuda = os.environ['REDNER_CUDA'] == '1'
dynamic_libraries = []
# Make Embree and OptiX part of the package
if sys.platform == 'darwin':
dynamic_libraries.append('redner-dependencies/embree/lib-macos/libembree3.dylib')
dynamic_libraries.append('redner-dependencies/embree/lib-macos/libtbb.dylib')
dynamic_libraries.append('redner-dependencies/embree/lib-macos/libtbbmalloc.dylib')
elif sys.platform == 'linux':
dynamic_libraries.append('redner-dependencies/embree/lib-linux/libembree3.so.3')
dynamic_libraries.append('redner-dependencies/embree/lib-linux/libtbb.so.2')
dynamic_libraries.append('redner-dependencies/embree/lib-linux/libtbbmalloc.so.2')
if build_with_cuda:
dynamic_libraries.append('redner-dependencies/optix/lib64/liboptix_prime.so.1')
elif sys.platform == 'win32':
dynamic_libraries.append('redner-dependencies/embree/bin/embree3.dll')
dynamic_libraries.append('redner-dependencies/embree/bin/tbb.dll')
dynamic_libraries.append('redner-dependencies/embree/bin/tbbmalloc.dll')
if build_with_cuda:
dynamic_libraries.append('redner-dependencies/optix/bin64/optix_prime.1.dll')
project_name = 'redner'
if 'PROJECT_NAME' in os.environ:
project_name = os.environ['PROJECT_NAME']
setup(name = project_name,
version = '0.4.28',
description = 'Differentiable rendering without approximation.',
long_description = """redner is a differentiable renderer that can take the
derivatives of rendering output with respect to arbitrary
scene parameters, that is, you can backpropagate from the
image to your 3D scene. One of the major usages of redner
is inverse rendering (hence the name redner) through gradient
descent. What sets redner apart are: 1) it computes correct
rendering gradients stochastically without any approximation
and 2) it has a physically-based mode -- which means it can
simulate photons and produce realistic lighting phenomena,
such as shadow and global illumination, and it handles the
derivatives of these features correctly. You can also use
redner in a fast deferred rendering mode for local shading:
in this mode it still has correct gradient estimation and
more elaborate material models compared to most differentiable
renderers out there.
""",
url = 'https://github.com/BachiLi/redner',
classifiers = [
'Development Status :: 4 - Beta',
'License :: OSI Approved :: MIT License',
'Programming Language :: C++',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Operating System :: MacOS',
'Operating System :: POSIX :: Linux',
'Topic :: Multimedia :: Graphics :: 3D Rendering',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Image Recognition'
],
author = 'Tzu-Mao Li',
author_email = '[email protected]',
license = 'MIT',
packages = packages,
ext_modules = [CMakeExtension('redner', '', build_with_cuda),
CopyExtension('redner-dependencies', dynamic_libraries)],
cmdclass = dict(build_ext=Build, install=RemoveOldRednerBeforeInstall),
install_requires = ['scikit-image', 'imageio'],
keywords = ['rendering',
'Monte Carlo ray tracing',
'computer vision',
'computer graphics',
'differentiable rendering',
'PyTorch',
'TensorFlow'],
zip_safe = False)