-
Notifications
You must be signed in to change notification settings - Fork 361
/
Copy pathblake3_neon.c
366 lines (336 loc) · 13.5 KB
/
blake3_neon.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#include "blake3_impl.h"
#include <arm_neon.h>
#ifdef __ARM_BIG_ENDIAN
#error "This implementation only supports little-endian ARM."
// It might be that all we need for big-endian support here is to get the loads
// and stores right, but step zero would be finding a way to test it in CI.
#endif
INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
// vld1q_u32 has alignment requirements. Don't use it.
return vreinterpretq_u32_u8(vld1q_u8(src));
}
INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
// vst1q_u32 has alignment requirements. Don't use it.
vst1q_u8(dest, vreinterpretq_u8_u32(src));
}
INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
return vaddq_u32(a, b);
}
INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
return veorq_u32(a, b);
}
INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
uint32_t array[4] = {a, b, c, d};
return vld1q_u32(array);
}
INLINE uint32x4_t rot16_128(uint32x4_t x) {
// The straightforward implementation would be two shifts and an or, but that's
// slower on microarchitectures we've tested. See
// https://github.com/BLAKE3-team/BLAKE3/pull/319.
// return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
return vreinterpretq_u32_u16(vrev32q_u16(vreinterpretq_u16_u32(x)));
}
INLINE uint32x4_t rot12_128(uint32x4_t x) {
// See comment in rot16_128.
// return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
return vsriq_n_u32(vshlq_n_u32(x, 32-12), x, 12);
}
INLINE uint32x4_t rot8_128(uint32x4_t x) {
// See comment in rot16_128.
// return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
#if defined(__clang__)
return vreinterpretq_u32_u8(__builtin_shufflevector(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), 1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12));
#elif __GNUC__ * 10000 + __GNUC_MINOR__ * 100 >=40700
static const uint8x16_t r8 = {1,2,3,0,5,6,7,4,9,10,11,8,13,14,15,12};
return vreinterpretq_u32_u8(__builtin_shuffle(vreinterpretq_u8_u32(x), vreinterpretq_u8_u32(x), r8));
#else
return vsriq_n_u32(vshlq_n_u32(x, 32-8), x, 8);
#endif
}
INLINE uint32x4_t rot7_128(uint32x4_t x) {
// See comment in rot16_128.
// return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
return vsriq_n_u32(vshlq_n_u32(x, 32-7), x, 7);
}
// TODO: compress_neon
// TODO: hash2_neon
/*
* ----------------------------------------------------------------------------
* hash4_neon
* ----------------------------------------------------------------------------
*/
INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[15] = rot16_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot12_128(v[4]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
v[0] = add_128(v[0], v[4]);
v[1] = add_128(v[1], v[5]);
v[2] = add_128(v[2], v[6]);
v[3] = add_128(v[3], v[7]);
v[12] = xor_128(v[12], v[0]);
v[13] = xor_128(v[13], v[1]);
v[14] = xor_128(v[14], v[2]);
v[15] = xor_128(v[15], v[3]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[15] = rot8_128(v[15]);
v[8] = add_128(v[8], v[12]);
v[9] = add_128(v[9], v[13]);
v[10] = add_128(v[10], v[14]);
v[11] = add_128(v[11], v[15]);
v[4] = xor_128(v[4], v[8]);
v[5] = xor_128(v[5], v[9]);
v[6] = xor_128(v[6], v[10]);
v[7] = xor_128(v[7], v[11]);
v[4] = rot7_128(v[4]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot16_128(v[15]);
v[12] = rot16_128(v[12]);
v[13] = rot16_128(v[13]);
v[14] = rot16_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot12_128(v[5]);
v[6] = rot12_128(v[6]);
v[7] = rot12_128(v[7]);
v[4] = rot12_128(v[4]);
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
v[0] = add_128(v[0], v[5]);
v[1] = add_128(v[1], v[6]);
v[2] = add_128(v[2], v[7]);
v[3] = add_128(v[3], v[4]);
v[15] = xor_128(v[15], v[0]);
v[12] = xor_128(v[12], v[1]);
v[13] = xor_128(v[13], v[2]);
v[14] = xor_128(v[14], v[3]);
v[15] = rot8_128(v[15]);
v[12] = rot8_128(v[12]);
v[13] = rot8_128(v[13]);
v[14] = rot8_128(v[14]);
v[10] = add_128(v[10], v[15]);
v[11] = add_128(v[11], v[12]);
v[8] = add_128(v[8], v[13]);
v[9] = add_128(v[9], v[14]);
v[5] = xor_128(v[5], v[10]);
v[6] = xor_128(v[6], v[11]);
v[7] = xor_128(v[7], v[8]);
v[4] = xor_128(v[4], v[9]);
v[5] = rot7_128(v[5]);
v[6] = rot7_128(v[6]);
v[7] = rot7_128(v[7]);
v[4] = rot7_128(v[4]);
}
INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
// Individually transpose the four 2x2 sub-matrices in each corner.
uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
// Swap the top-right and bottom-left 2x2s (which just got transposed).
vecs[0] =
vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
vecs[1] =
vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
vecs[2] =
vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
vecs[3] =
vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
}
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
size_t block_offset, uint32x4_t out[16]) {
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
transpose_vecs_128(&out[0]);
transpose_vecs_128(&out[4]);
transpose_vecs_128(&out[8]);
transpose_vecs_128(&out[12]);
}
INLINE void load_counters4(uint64_t counter, bool increment_counter,
uint32x4_t *out_low, uint32x4_t *out_high) {
uint64_t mask = (increment_counter ? ~0 : 0);
*out_low = set4(
counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
*out_high = set4(
counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
}
void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
const uint32_t key[8], uint64_t counter,
bool increment_counter, uint8_t flags,
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
uint32x4_t h_vecs[8] = {
set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
};
uint32x4_t counter_low_vec, counter_high_vec;
load_counters4(counter, increment_counter, &counter_low_vec,
&counter_high_vec);
uint8_t block_flags = flags | flags_start;
for (size_t block = 0; block < blocks; block++) {
if (block + 1 == blocks) {
block_flags |= flags_end;
}
uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
uint32x4_t block_flags_vec = set1_128(block_flags);
uint32x4_t msg_vecs[16];
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
uint32x4_t v[16] = {
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
};
round_fn4(v, msg_vecs, 0);
round_fn4(v, msg_vecs, 1);
round_fn4(v, msg_vecs, 2);
round_fn4(v, msg_vecs, 3);
round_fn4(v, msg_vecs, 4);
round_fn4(v, msg_vecs, 5);
round_fn4(v, msg_vecs, 6);
h_vecs[0] = xor_128(v[0], v[8]);
h_vecs[1] = xor_128(v[1], v[9]);
h_vecs[2] = xor_128(v[2], v[10]);
h_vecs[3] = xor_128(v[3], v[11]);
h_vecs[4] = xor_128(v[4], v[12]);
h_vecs[5] = xor_128(v[5], v[13]);
h_vecs[6] = xor_128(v[6], v[14]);
h_vecs[7] = xor_128(v[7], v[15]);
block_flags = flags;
}
transpose_vecs_128(&h_vecs[0]);
transpose_vecs_128(&h_vecs[4]);
// The first four vecs now contain the first half of each output, and the
// second four vecs contain the second half of each output.
storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
}
/*
* ----------------------------------------------------------------------------
* hash_many_neon
* ----------------------------------------------------------------------------
*/
void blake3_compress_in_place_portable(uint32_t cv[8],
const uint8_t block[BLAKE3_BLOCK_LEN],
uint8_t block_len, uint64_t counter,
uint8_t flags);
INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
const uint32_t key[8], uint64_t counter,
uint8_t flags, uint8_t flags_start, uint8_t flags_end,
uint8_t out[BLAKE3_OUT_LEN]) {
uint32_t cv[8];
memcpy(cv, key, BLAKE3_KEY_LEN);
uint8_t block_flags = flags | flags_start;
while (blocks > 0) {
if (blocks == 1) {
block_flags |= flags_end;
}
// TODO: Implement compress_neon. However note that according to
// https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
// compress_neon might not be any faster than compress_portable.
blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
block_flags);
input = &input[BLAKE3_BLOCK_LEN];
blocks -= 1;
block_flags = flags;
}
memcpy(out, cv, BLAKE3_OUT_LEN);
}
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
size_t blocks, const uint32_t key[8],
uint64_t counter, bool increment_counter,
uint8_t flags, uint8_t flags_start,
uint8_t flags_end, uint8_t *out) {
while (num_inputs >= 4) {
blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
flags_start, flags_end, out);
if (increment_counter) {
counter += 4;
}
inputs += 4;
num_inputs -= 4;
out = &out[4 * BLAKE3_OUT_LEN];
}
while (num_inputs > 0) {
hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
flags_end, out);
if (increment_counter) {
counter += 1;
}
inputs += 1;
num_inputs -= 1;
out = &out[BLAKE3_OUT_LEN];
}
}