-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_qdm.py
160 lines (111 loc) · 3.97 KB
/
test_qdm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""Test quantile delta mapping"""
import pytest
import numpy as np
import pandas as pd
import xarray as xr
import train
import quantiles
import adjust
@pytest.fixture
def ds_hist():
"""Create an example historical dataset"""
times = pd.date_range("2000-01-01", "2019-12-31", freq="D")
times = times[(times.month != 2) | (times.day != 29)]
da_hist = xr.DataArray(
(
-13 * np.cos(2 * np.pi * np.tile(np.arange(1, 366), 20) / 365)
+ 2 * np.random.random_sample((times.size,))
+ 20
+ 0.1 * np.arange(0, times.size) / 365
), # "warming" of 1C per decade,
dims=("time",),
coords={"time": times},
attrs={"units": "C"},
)
ds_hist = da_hist.to_dataset(name='tasmax')
return ds_hist
@pytest.fixture
def ds_ref(ds_hist):
"""Create an example reference dataset.
Perturbs historical data to create reference data.
(add month number times 10 to historical values > 50th percentile)
"""
da_hist = ds_hist['tasmax']
monthly_quantiles = da_hist.groupby('time.month').quantile([0.5,], dim='time', keep_attrs=True)
da_hist_by_month = da_hist.groupby('time.month')
below_q50 = da_hist_by_month < monthly_quantiles.sel(quantile=0.5)
ds_ref = ds_hist.copy()
ds_ref['tasmax'] = da_hist_by_month.where(below_q50)
ds_ref['tasmax'] = ds_ref['tasmax'].fillna(da_hist + (ds_ref['month'] * 10))
del ds_ref['month']
with xr.set_options(keep_attrs=True):
ds_ref['tasmax'] = ds_ref['tasmax'] + 1
times = pd.date_range("2040-01-01", "2059-12-31", freq="D")
times = times[(times.month != 2) | (times.day != 29)]
ds_ref['time'] = times
return ds_ref
@pytest.fixture
def ref_q(ds_ref):
"""Calculate reference dataset quantiles."""
ref_q = quantiles.quantiles(ds_ref, 'tasmax', 100)
return ref_q
@pytest.fixture
def ds_target(ds_hist):
"""Create an example target dataset."""
ds_target = ds_hist.copy()
return ds_target
@pytest.fixture
def ds_adjust(ds_hist, ds_ref):
"""Calculate example adjustment factors."""
ds_adjust = train.train(
ds_hist,
ds_ref,
'tasmax',
'tasmax',
scaling='additive',
nquantiles=100,
time_grouping='monthly',
ssr=False,
)
return ds_adjust
@pytest.fixture
def ds_qq(ds_target, ds_adjust):
"""Calculate example QDC dataset."""
ds_qq = adjust.adjust(
ds_target,
'tasmax',
ds_adjust,
ssr=False,
ref_time=True,
interp='nearest'
)
return ds_qq
@pytest.fixture
def qq_q(ds_qq):
"""Calculate example QDC dataset quantiles."""
qq_q = quantiles.quantiles(ds_qq, 'tasmax', 100)
return qq_q
def test_training(ds_adjust):
"""Test training step.
Adjustment factors should match the perterbations
applied by the ds_ref fixture.
"""
actual_result = ds_adjust['af'].values
expected_result = np.ones([100, 12])
for month in range(12):
perturbation = np.ones(50) + ((month + 1) * 10)
expected_result[50:, month] = perturbation
assert np.allclose(expected_result, actual_result)
@pytest.mark.parametrize("month", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
def test_adjustment(qq_q, ref_q, ds_adjust, month):
"""Test adjustment step.
The quantile changes between ds_hist and ds_ref should match
the quantile changes between ds_target and ds_q.
"""
target_quantiles = ds_adjust['hist_q'].sel({'month': month}).values
qq_quantiles = qq_q['tasmax'].sel({'month': month}).values
hist_quantiles = ds_adjust['hist_q'].sel({'month': month}).values
future_quantiles = ref_q['tasmax'].sel({'month': month}).values
qq_quantile_change = qq_quantiles - target_quantiles
model_quantile_change = future_quantiles - hist_quantiles
assert np.allclose(qq_quantile_change, model_quantile_change)