-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParser.py
225 lines (205 loc) · 8.86 KB
/
Parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
import pandas as pd
from sklearn import preprocessing
from sklearn.utils import shuffle
'''
class take excel table and make csv dataset with formalized data
__init__() method
parsed_file - path to excel file for receive data
age_group_matrix - matrix for using as patients age groups; -1 -1 -1 for empty age cells
sex_matrix - matrix for using as sex; -1 -1 for empty age cells
'''
class DataPreparer:
def __init__(self, parsed_file):
'''
:param parsed_file: excel table with data
'''
self.age_intervals = [(-1, 0), (0, 17), (17, 21), (21, 55), (55, 75), (75, 90), (90, 1000)]
self.to_parse = parsed_file
self.encoder = preprocessing.LabelEncoder()
self.patient_id = None
self.dataset_unmodified = None
self.dataset_no_useless = None
def parse(self):
'''
Form dataframe from excel table. Make csv for safety
:return: None
'''
if 'res_dataset.csv' in os.listdir(os.getcwd()):
output_dataset = pd.read_csv('res_dataset.csv')
print('Use csv as a source')
else:
print('Start excel reading')
data_xls = pd.read_excel(self.to_parse, index_col=0)
data_xls.to_csv('res_dataset.csv', encoding='utf-8')
output_dataset = pd.read_csv('res_dataset.csv')
output_dataset = shuffle(output_dataset)
print('Formed csv source')
output_dataset = output_dataset.fillna(-1)
self.dataset_unmodified = output_dataset
self.dataset_no_useless = self.dataset_unmodified
print(self.dataset_no_useless.replace({'N':None}))
def remove_useless(self, useless_fields=None):
'''
Remove useless columns from dataframe
:param useless_fields: list of dataframe useless columns
:return: 0 if useless columns list is empty
'''
if useless_fields:
for i in useless_fields:
self.dataset_no_useless = self.dataset_no_useless.drop(i, 1)
temp = 0
for columns in self.dataset_no_useless:
for val in self.dataset_no_useless[columns]:
if val == -1:
temp += 1
if temp/len(self.dataset_no_useless[columns]) >= 0.5:
self.dataset_no_useless = self.dataset_no_useless.drop(columns, 1)
temp = 0
else:
print('Nothing to delete')
return 0
def replace_undef_symbols(self, columns):
'''
:param columns: list of columns for replace symbols like < > in string type predictors
:return:
'''
for i in columns:
for val in self.dataset_no_useless[i]:
if (type(val) == str) and (('>' in val) or ('<' in val)):
self.dataset_no_useless.loc[self.dataset_no_useless[i] == val, i] = val[1::]
def dataset_to_numeric(self, numeric_mode=None):
'''
Converting data to numeric format
:param numeric_mode: errors parameter for pandas to_numeric method
:return: None
'''
for col in self.dataset_no_useless.columns:
self.dataset_no_useless[col] = pd.to_numeric(self.dataset_no_useless[col], errors=numeric_mode, downcast='float')
self.dataset_no_useless.fillna(-1)
def gender_changes(self, gender_column=None):
'''
Encode column, chosen as "gender"
:param gender_column: label of gender column
:return: 0 if gender_column is None
'''
if gender_column:
self.dataset_no_useless[gender_column] = self.dataset_no_useless[gender_column].map(
{'Мужской': 0, 'Женский': 1}
)
else:
print('Nothing to replace')
return 0
def replace_to_BMI(self, w_h_columns=None):
'''
Replace columns, chosen as "weight" and "height" to BMI
:param w_h_columns: weight and height columns labels
:return: 0 if columns are empty
'''
if w_h_columns:
weight_bmi = self.dataset_no_useless[w_h_columns[0]].copy()
height_bmi = self.dataset_no_useless[w_h_columns[1]].copy()
for cols in w_h_columns:
self.dataset_no_useless = self.dataset_no_useless.drop(cols, 1)
bmi = []
for count, val in enumerate(height_bmi):
if (height_bmi[count] == 0) or (weight_bmi[count] == 0):
bmi.append(-1)
else:
bmi.append(weight_bmi[count]/((height_bmi[count]/100)**2))
self.dataset_no_useless['BMI'] = bmi
self.dataset_no_useless = self.dataset_no_useless.drop(
self.dataset_no_useless[self.dataset_no_useless.BMI > 300].index)
else:
print('Nothing to replace')
return 0
def ages_change(self, ages_column=None):
'''
Replace column, chosen as "age" to age group matrix
:param ages_column: age column label.
:return: 0 if column is empty
'''
if ages_column:
for interval in self.age_intervals:
self.dataset_no_useless[str(interval)] = [1 if j in range(*interval) else
0 for j in self.dataset_no_useless[ages_column]]
self.dataset_no_useless = self.dataset_no_useless.drop(ages_column, 1)
print(self.dataset_no_useless)
else:
print('Nothing to replace')
return 0
def invalid_check(self, invalid_columns=None):
'''
Check for correct values in chosen columns
:param invalid_columns: list of labels of columns to check
:return: 0 if list if empty
'''
for col in invalid_columns:
self.dataset_no_useless[col].replace(0.0, -1, inplace=True)
for col in invalid_columns:
print(self.dataset_no_useless[col])
else:
print('Nothing to replace')
return 0
def separate_class_labels(self, labels):
max_len_main_diag = 0
max_len_additional_diag = 0
main_diag = True
main_diag_list = []
additional_diag_list = []
for label in labels:
for val in self.dataset_no_useless[label]:
if main_diag:
try:
if len(val.split('>>')) > max_len_main_diag:
max_len_main_diag = len(val.split('>>'))
main_diag_list.append(val.split('>>'))
except Exception as e:
main_diag_list.append([-1, ])
else:
try:
if len(val.split('>>')) > max_len_additional_diag:
max_len_additional_diag = len(val.split('>>'))
additional_diag_list.append(val.split('>>'))
except Exception as e:
additional_diag_list.append([-1, ])
main_diag = not main_diag
main_diag_df = pd.DataFrame(main_diag_list, columns=[f'Main_diag_{i}'
for i in range(max_len_main_diag)]).fillna(-1)
add_diag_df = pd.DataFrame(additional_diag_list, columns=[f'Add_diag_{i}'
for i in range(max_len_additional_diag)]).fillna(-1)
for frame in (main_diag_df, add_diag_df):
for column in frame:
frame[column] = frame[column].astype(str)
frame[column] = self._encode_class_labels(frame[column])
for label in labels:
self.dataset_no_useless = self.dataset_no_useless.drop(label, 1)
self.dataset_no_useless = pd.concat([self.dataset_no_useless, main_diag_df, add_diag_df], axis=1, join='inner')
self.dataset_no_useless = self.dataset_no_useless.fillna(-1)
def _encode_class_labels(self, label):
return self.encoder.fit_transform(label)
def change_parsed_file(self, file_path):
'''
Change file with data. Isnt use now.
:param file_path: new filepath
:return: None
'''
self.to_parse = file_path
@property
def get_dataset_no_useless(self):
'''
:return: data after first Nan and incorrect replacing
'''
return self.dataset_no_useless
@property
def get_dataset_unmodified(self):
'''
:return: vanila data
'''
return self.dataset_unmodified
@property
def get_ages(self):
'''
:return: interval of ages
'''
return self.age_intervals