-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNN_cla_models.sh
34 lines (28 loc) · 1.46 KB
/
NN_cla_models.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/bin/bash
if [ -n "$1" ]
then
if [ $1 == "example" ]
then
exm=1
else
exm=0
fi
else
exm=0
fi
if [ $exm == 1 ]
then
# a smaller dataset for fast get started, change learning rate because the data size change.
python train.py --data_source data/example/single_test --input data/example/pad_feature --model lstm --time_selection z3 --threshold 200 --lr 0.1
python train.py --input data/example/pad_feature --load_file e_pad_feature_l_z_c_200 --model lstm --time_selection z3
python simulation.py --model_name lstm --load_file checkpoints/e_pad_feature_l_z_c_200.pkl --test_directory data/example/single_test/arch --time_selection adjust
else
# run the nerual network model, here only represent one model,
# LSTM to predict the solving time(regression), cross valid
# to use other models, please refer to train.py --help and readme
python train.py --data_source data/gnucore/single_test --input data/gnucore/pad_feature --model lstm --time_selection z3 --threshold 200 --cross_index 0
# evaluate the trained model with program's result
python train.py --input data/gnucore/pad_feature --load_file g_pad_feature_l_z_c_200_0 --model lstm --time_selection z3
# you may further run the simulation for a tested program to see the solving as the order of data collection
python simulation.py --model_name lstm --load_file checkpoints/g_pad_feature_l_z_c_200_0.pkl --test_directory data/gnucore/single_test/arch --time_selection adjust
fi