-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcaption_gen.py
executable file
·61 lines (48 loc) · 1.83 KB
/
caption_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import pickle
import sys
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
from tensorflow.keras.preprocessing import image
import numpy as np
model = load_model('weights/model_9.h5')
model_temp = ResNet50(weights='imagenet',input_shape=(224,224,3))
model_resnet = Model(model_temp.input,model_temp.layers[-2].output)
def preprocess_image(img):
print(img,file=sys.stderr)
target_size = (224, 224)
img = img.resize(target_size)
img = image.img_to_array(img)
img = np.expand_dims(img,axis=0)
img = preprocess_input(img)
return img
def encode_image(img):
img = preprocess_image(img)
feature_vector = model_resnet.predict(img)
feature_vector = feature_vector.reshape(1,feature_vector.shape[1])
return feature_vector
words_to_idx = {}
idx_to_words = {}
with open('storage/word_to_idx.pkl','rb') as w2i:
words_to_idx = pickle.load(w2i)
with open('storage/idx_to_word.pkl','rb') as i2w:
idx_to_words = pickle.load(i2w)
def predict_caption(photo):
in_text = 'startseq'
max_len = 35
for i in range(max_len):
sequence = [words_to_idx[w] for w in in_text.split() if w in words_to_idx]
sequence = pad_sequences([sequence],max_len,padding='post')
y_pred = model.predict([photo,sequence])
y_pred = y_pred.argmax() # word with max prob always. --> Greedy sampling
word = idx_to_words[y_pred]
in_text += (' ' + word)
if word == 'endseq':
break
final_caption = in_text.split()[1:-1]
final_caption = " ".join(final_caption)
return final_caption
def caption_this_image(image):
enc = encode_image(image)
caption = predict_caption(enc)
return caption