-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
126 lines (117 loc) · 4.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from NeuroGraph.datasets import NeuroGraphDataset
import argparse
import torch
import torch.nn.functional as F
from torch.optim import Adam
import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from torch_geometric.loader import DataLoader
import os,random
import os.path as osp
import sys
import time
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='HCPGender')
parser.add_argument('--runs', type=int, default=1)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--model', type=str, default="GCNConv")
parser.add_argument('--hidden', type=int, default=32)
parser.add_argument('--hidden_mlp', type=int, default=64)
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--echo_epoch', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--early_stopping', type=int, default=50)
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--dropout', type=float, default=0.5)
args = parser.parse_args()
path = "base_params/"
res_path = "results/"
root = "data/"
if not os.path.isdir(path):
os.mkdir(path)
if not os.path.isdir(res_path):
os.mkdir(res_path)
def logger(info):
f = open(os.path.join(res_path, 'results_new.csv'), 'a')
print(info, file=f)
fix_seed(args.seed)
dataset = NeuroGraphDataset(root=root, name= args.dataset)
print(dataset.num_classes)
print(len(dataset))
print("dataset loaded successfully!",args.dataset)
labels = [d.y.item() for d in dataset]
train_tmp, test_indices = train_test_split(list(range(len(labels))),
test_size=0.2, stratify=labels,random_state=args.seed,shuffle= True)
tmp = dataset[train_tmp]
train_labels = [d.y.item() for d in tmp]
train_indices, val_indices = train_test_split(list(range(len(train_labels))),
test_size=0.125, stratify=train_labels,random_state=args.seed,shuffle = True)
train_dataset = tmp[train_indices]
val_dataset = tmp[val_indices]
test_dataset = dataset[test_indices]
print("dataset {} loaded with train {} val {} test {} splits".format(args.dataset,len(train_dataset), len(val_dataset), len(test_dataset)))
train_loader = DataLoader(train_dataset, args.batch_size, shuffle=False)
val_loader = DataLoader(val_dataset, args.batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, args.batch_size, shuffle=False)
args.num_features,args.num_classes = dataset.num_features,dataset.num_classes
criterion = torch.nn.CrossEntropyLoss()
#criterion = torch.nn.L1Loss()
def train(train_loader):
model.train()
total_loss = 0
for data in train_loader:
data = data.to(args.device)
out = model(data)
loss = criterion(out, data.y)
total_loss +=loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
return total_loss/len(train_loader.dataset)
# return total_loss/len(train_loader) # For L1 loss. This may retun higher loss on the regression tasks since the paper used (total_loss/len(train_loader.dataset))
@torch.no_grad()
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(args.device)
out = model(data)
pred = out.argmax(dim=1)
correct += int((pred == data.y).sum())
return correct / len(loader.dataset)
val_acc_history, test_acc_history, test_loss_history = [],[],[]
seeds = [123,124]
for index in range(args.runs):
start = time.time()
fix_seed(seeds[index])
gnn = eval(args.model)
model = ResidualGNNs(args,train_dataset,args.hidden,args.hidden_mlp,args.num_layers,gnn).to(args.device) ## apply GNN*
print(model)
total_params = sum(p.numel() for p in model.parameters())
print(f"Total number of parameters is: {total_params}")
optimizer = Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
loss, test_acc = [],[]
best_val_acc,best_val_loss = 0.0,0.0
for epoch in range(args.epochs):
loss = train(train_loader)
val_acc = test(val_loader)
test_acc = test(test_loader)
# if epoch%10==0:
print("epoch: {}, loss: {}, val_acc:{}, test_acc:{}".format(epoch, np.round(loss.item(),6), np.round(val_acc,2),np.round(test_acc,2)))
val_acc_history.append(val_acc)
if val_acc > best_val_acc:
best_val_acc = val_acc
if epoch> int(args.epochs/2):## save the best model
torch.save(model.state_dict(), path + args.dataset+args.model+'task-checkpoint-best-acc.pkl')
#test the model
model.load_state_dict(torch.load(path + args.dataset+args.model+'task-checkpoint-best-acc.pkl'))
model.eval()
test_acc = test(test_loader)
test_loss = train(test_loader).item()
test_acc_history.append(test_acc)
test_loss_history.append(test_loss)