-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathargument_parser.py
224 lines (206 loc) · 9.3 KB
/
argument_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python3.10
# -*- coding: utf-8 -*-
"""Argument parser."""
# -- File info -- #
__author__ = 'Andrzej S. Kucik'
__copyright__ = 'European Space Agency'
__contact__ = '[email protected]'
__version__ = '0.1.1'
__date__ = '2022-01-28'
# -- Built-in modules -- #
from argparse import ArgumentParser
from datetime import datetime
from os import makedirs
# - Third-party modules -- #
import tensorflow as tf
def parse_arguments(arguments: list):
"""
Parses arguments.
Parameters
----------
arguments : List
Arguments for parsing.
Returns
-------
arguments : dict
Dictionary of parsed arguments.
"""
# Argument parser
parser = ArgumentParser()
# - Parameters
# -- Random seed (fro reproducibility)
parser.add_argument('-s',
'--seed',
type=int,
default=5,
help='Global random seed.')
# -- Dataset
parser.add_argument('-ds',
'--dataset',
type=str,
default='eurosat',
help='Dataset. Either `eurosat` or `ucm`. One can also add `prewitt`, `sobel`, `mask` or `sq`.')
# -- Models
parser.add_argument('-md',
'--model_path',
type=str,
help='Path to pretrained ANN model. Make sure that it is consistent with the dataset.')
parser.add_argument('-wp',
'--weights_path',
type=str,
help='Path to weights of a pretrained SNN.')
# -- Training
parser.add_argument('-e',
'--epochs',
type=int,
default=1000, # 16 SNN
help='(Target) number of epochs.')
parser.add_argument('-bs',
'--batch_size',
type=int,
default=32, # 16 SNN
help='(Target batch) size (per replica).')
parser.add_argument('-lr',
'--learning_rate',
type=float,
default=.001, # 3e-5 SNN
help='(Target) learning rate.')
# --- ANN
parser.add_argument('-kl2',
'--kernel_l2',
type=float,
default=1e-4,
help='Regularization L2 parameter for the convolutional kernels.')
parser.add_argument('-bl1',
'--bias_l1',
type=float,
default=1e-5,
help='Regularization L1 parameter for the convolutional biases.')
# --- SNN
# --- To speed-up the training, we may do it iteratively, by increasing the number of timesteps by a factor of 2,
# --- starting with a single timestep. We can also start with large batch sizes, and decrease them (also by a factor
# --- of 2), but then we must remember to lower the learning rate. The other parameters are treated as targets, so
# --- they will be used in the final training step.
parser.add_argument('-i',
'--iterate',
action='store_true',
default=False,
help='If `True`, then the training is iterative.')
parser.add_argument('-t',
'--timesteps',
type=int,
default=32,
help='Target number of simulation timesteps (the training starts with 1).')
parser.add_argument('-dt',
'--dt',
type=float,
default=1.,
help='Simulation temporal resolution. Decayed during SNN training.')
parser.add_argument('-l2',
'--l2',
type=float,
default=1e-9,
help='L2 regularization for the spike frequencies.')
parser.add_argument('-lhz',
'--lower_hz',
type=float,
default=10.,
help='Lower frequency target for the spikes (Hz). Must be positive')
parser.add_argument('-uhz',
'--upper_hz',
type=float,
default=20.,
help='Upper frequency target for the spikes (Hz). Must be bigger than lower_hz')
parser.add_argument('-tau',
'--tau',
type=float,
default=0.1,
help='Tau parameter for the low-pass filter.')
# -- Augmentation
parser.add_argument('-lz',
'--lower_zoom',
type=float,
default=.95,
help='Augmentation parameter. Lower bound for a random zoom factor. Must be positive.')
parser.add_argument('-uz',
'--upper_zoom',
type=float,
default=1.05,
help='Augmentation parameter. Upper bound for a random zoom factor. '
+ 'Must be bigger than lower_zoom.')
parser.add_argument('-mbd',
'--max_brightness_delta',
type=float,
default=.2,
help='Augmentation parameter. Maximum brightness delta. Must be a non-negative float.')
parser.add_argument('-mhd',
'--max_hue_delta',
type=float,
default=.1,
help='Augmentation parameter. Maximum hue delta. Must be in the interval [0, .5].')
parser.add_argument('-lc',
'--lower_contrast',
type=float, default=.2,
help='Augmentation parameter. Lower bound for a random contrast factor. Must be positive.')
parser.add_argument('-uc',
'--upper_contrast',
type=float,
default=1.8,
help='Augmentation parameter. Upper bound for a random contrast factor. '
+ 'Must be bigger than lower_contrast.')
parser.add_argument('-ls',
'--lower_saturation',
type=float,
default=.9,
help='Augmentation parameter. Lower bound for a random saturation factor. Must be positive.')
parser.add_argument('-us',
'--upper_saturation',
type=float,
default=1.1,
help='Augmentation parameter. Upper bound for a random saturation factor. '
+ 'Must be bigger than lower_saturation.')
# -- Energy estimation verbosity
parser.add_argument('-v',
'--verbose',
action='store_true',
default=False,
help='If True, the energy contributions for all the layers is shown.')
# - Parse arguments
arguments = vars(parser.parse_args(arguments))
# Assertions
assert 0 < arguments['lower_hz'] < arguments['upper_hz']
assert 0 < arguments['lower_zoom'] < arguments['upper_zoom']
assert 0 <= arguments['max_brightness_delta']
assert 0 <= arguments['max_hue_delta'] <= .5
assert 0 < arguments['lower_contrast'] < arguments['upper_contrast']
assert 0 < arguments['lower_saturation'] < arguments['upper_saturation']
# Log time
arguments['time'] = datetime.now().strftime('%Y%m%d-%H%M%S')
# Dataset
arguments['dataset'] = arguments['dataset'].lower()
arguments['input_shape'] = (64, 64, 3) if 'eurosat' in arguments['dataset'] else (224, 224, 3) # ucm
arguments['num_classes'] = 10 if 'eurosat' in arguments['dataset'] else 21 # ucm
# Model path
if arguments['model_path'] is None: # For ANN training
arguments['model_name'] = f"{arguments['dataset']}/{arguments['time']}"
arguments['model_path'] = f"models/{arguments['model_name']}"
makedirs(arguments['model_path'], exist_ok=True)
else: # For SNN training
if arguments['weights_path'] is None: # - First time training
arguments['model_name'] = f"{arguments['dataset']}_spiking/{arguments['time']}"
arguments['weights_path'] = f"models/{arguments['model_name']}"
makedirs(arguments['weights_path'], exist_ok=True)
else: # - Fine-tuning
arguments['model_name'] = f"{arguments['dataset']}_spiking_fine_tuned/{arguments['time']}"
# Log the arguments to Tensorboard
summary_writer = tf.summary.create_file_writer(f"logs/{arguments['model_name']}/arguments")
with summary_writer.as_default():
for key, value in arguments.items():
if isinstance(value, str):
tf.summary.text(key, value, step=0)
elif isinstance(value, (int, float)):
tf.summary.scalar(key, value, step=0)
elif isinstance(value, (tuple, list)):
for n in range(len(value)):
tf.summary.scalar(key, value[n], step=n)
return arguments