forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlot Layers Keras
138 lines (114 loc) · 4.15 KB
/
Plot Layers Keras
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import keras
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda
from keras.models import Model
from keras import backend as K
from keras import objectives
from keras.datasets import mnist
from keras.layers.core import Reshape
from __future__ import print_function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D, UpSampling2D
from keras.utils import np_utils
from keras.layers.normalization import BatchNormalization
from keras.callbacks import ModelCheckpoint,LearningRateScheduler
import os
from keras.optimizers import SGD
import theano
os.environ["KERAS_BACKEND"] = "theano"
#os.environ["THEANO_FLAGS"] = "device=gpu%d,lib.cnmem=0"%(random.randint(0,3))
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
x_train=x_train[1:2]
x_test=x_test[1:2]
noise_factor = 0.4
x_train_noisy = x_train + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape)
x_test_noisy = x_test + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
x_train=x_train.reshape((1,28,28,1))
x_test=x_test.reshape((1,28,28,1))
x_train_noisy = x_train_noisy.reshape((1,28,28,1))
x_test_noisy = x_test_noisy.reshape((1,28,28,1))
n = 1
plt.figure(figsize=(10, 2))
for i in range(0,n):
ax = plt.subplot(1, n, i+1)
plt.imshow(x_train_noisy[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
batch_size = 1
nb_classes = 10
img_rows, img_cols = 28, 28
nb_filters = 32
pool_size = (2, 2)
kernel_size = (3, 3)
input_shape=(28,28,1)
learning_rate = 0.02
decay_rate = 5e-5
momentum = 0.9
denoise = Sequential()
denoise.add(Convolution2D(20, 3,3,
border_mode='valid',
input_shape=input_shape))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(UpSampling2D(size=(2, 2)))
denoise.add(Convolution2D(20, 3, 3,
init='glorot_uniform'))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(Convolution2D(20, 3, 3,init='glorot_uniform'))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(MaxPooling2D(pool_size=(3,3)))
denoise.add(Convolution2D(4, 3, 3,init='glorot_uniform'))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(Reshape((28,28,1)))
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=False)
denoise.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['accuracy'])
denoise.summary()
denoise.fit(x_train_noisy, x_train,
nb_epoch=20,
batch_size=30,verbose=1)
a=denoise.predict(x_train_noisy)
plt.figure(figsize=(10, 10))
ax = plt.subplot(1, 2, 1)
plt.imshow(x_train_noisy.reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax = plt.subplot(1, 2, 2)
plt.imshow(a.reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
##################
## PRINT INTERMEDIATE LAYERS - ENTER OUTPUT LAYER AT "part"
for i in range(0,14):
print(i,denoise.layers[i].name)
denoise.summary()
part=4
denoise.layers[part].name
get_0_layer_output = K.function([denoise.layers[0].input, K.learning_phase()],[denoise.layers[part].output])
np.shape(get_0_layer_output([x_train, 0])[0])
plt.figure(figsize=(10,10))
for i in range(0,np.shape(get_0_layer_output([x_train, 0])[0])[3]):
ax=plt.subplot(4, 5, i+1)
plt.imshow(get_0_layer_output([x_train, 0])[0][0][i])
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()