forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMixture of Gaussians
45 lines (39 loc) · 1.37 KB
/
Mixture of Gaussians
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
import math
import scipy.stats as stats
import pylab as pl
iris = datasets.load_iris()
x = iris.data[:, 2:][0:140]
y = iris.target[0:140]
x_test = iris.data[:, 2:][141:150]
y_test = iris.target[141:150]
a1=[int(i) for i in np.where(y==0)[0]]
a2=[int(i) for i in np.where(y==1)[0]]
a3=[int(i) for i in np.where(y==2)[0]]
normal1 = stats.norm.pdf(x[a1,:1].ravel(), np.mean(x[a1,:1].ravel()), np.std(x[a1,:1].ravel()))
normal2 = stats.norm.pdf(x[a2,:1].ravel(), np.mean(x[a2,:1].ravel()), np.std(x[a2,:1].ravel()))
normal3 = stats.norm.pdf(x[a3,:1].ravel(), np.mean(x[a3,:1].ravel()), np.std(x[a3,:1].ravel()))
pl.figure(figsize=(10,6))
pl.plot(x[a1,:1],normal1,'o')
pl.plot(x[a2,:1],normal2,'o')
pl.plot(x[a3,:1],normal3,'o')
pl.hist(x[a1,:1].ravel(),normed=True)
pl.hist(x[a2,:1].ravel(),normed=True)
pl.hist(x[a3,:1].ravel(),normed=True)
pl.title('MIXTURE OF GAUSSIANS CLASSIFICATION - IRIS DATASET - Petal Width')
pl.show()
gauss=[]
for i in range(0,len(x)):
gauss.append(1/(np.sqrt(2*math.pi*np.std(x)**2))*math.exp(-.5*(x[i][1]-np.mean(x))/np.std(x)))
classe=[]
for i in range(0,len(gauss)):
if gauss[i]<.26:
classe.append(2)
elif gauss[i]>.33:
classe.append(0)
else:
classe.append(1)
print('Accuracy=',len(np.where(np.array(classe)-y==0)[0])/len(y))