-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathArcFace.py
94 lines (73 loc) · 3.95 KB
/
ArcFace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
from tensorflow.python.keras import backend
from tensorflow.python.keras.engine import training
from tensorflow.python.keras.utils import data_utils
from tensorflow.python.keras.utils import layer_utils
from tensorflow.python.lib.io import file_io
import tensorflow
from tensorflow import keras
import os
from pathlib import Path
import gdown
def loadModel():
base_model = ResNet34()
inputs = base_model.inputs[0]
arcface_model = base_model.outputs[0]
arcface_model = keras.layers.BatchNormalization(momentum=0.9, epsilon=2e-5)(arcface_model)
arcface_model = keras.layers.Dropout(0.4)(arcface_model)
arcface_model = keras.layers.Flatten()(arcface_model)
arcface_model = keras.layers.Dense(512, activation=None, use_bias=True, kernel_initializer="glorot_normal")(arcface_model)
embedding = keras.layers.BatchNormalization(momentum=0.9, epsilon=2e-5, name="embedding", scale=True)(arcface_model)
model = keras.models.Model(inputs, embedding, name=base_model.name)
#---------------------------------------
#check the availability of pre-trained weights
home = str(Path.home())
url = "https://drive.google.com/uc?id=1LVB3CdVejpmGHM28BpqqkbZP5hDEcdZY"
file_name = "arcface_weights.h5"
output = home+'/.deepface/weights/'+file_name
Path(home+'/.deepface/weights/').mkdir(parents=True, exist_ok=True)
if os.path.isfile(output) != True:
print(file_name," will be downloaded to ",output)
gdown.download(url, output, quiet=False)
#---------------------------------------
try:
model.load_weights(output)
except:
print("pre-trained weights could not be loaded.")
print("You might try to download it from the url ", url," and copy to ",output," manually")
return model
def ResNet34():
img_input = tensorflow.keras.layers.Input(shape=(112, 112, 3))
x = tensorflow.keras.layers.ZeroPadding2D(padding=1, name='conv1_pad')(img_input)
x = tensorflow.keras.layers.Conv2D(64, 3, strides=1, use_bias=False, kernel_initializer='glorot_normal', name='conv1_conv')(x)
x = tensorflow.keras.layers.BatchNormalization(axis=3, epsilon=2e-5, momentum=0.9, name='conv1_bn')(x)
x = tensorflow.keras.layers.PReLU(shared_axes=[1, 2], name='conv1_prelu')(x)
x = stack_fn(x)
model = training.Model(img_input, x, name='ResNet34')
return model
def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None):
bn_axis = 3
if conv_shortcut:
shortcut = tensorflow.keras.layers.Conv2D(filters, 1, strides=stride, use_bias=False, kernel_initializer='glorot_normal', name=name + '_0_conv')(x)
shortcut = tensorflow.keras.layers.BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + '_0_bn')(shortcut)
else:
shortcut = x
x = tensorflow.keras.layers.BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + '_1_bn')(x)
x = tensorflow.keras.layers.ZeroPadding2D(padding=1, name=name + '_1_pad')(x)
x = tensorflow.keras.layers.Conv2D(filters, 3, strides=1, kernel_initializer='glorot_normal', use_bias=False, name=name + '_1_conv')(x)
x = tensorflow.keras.layers.BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + '_2_bn')(x)
x = tensorflow.keras.layers.PReLU(shared_axes=[1, 2], name=name + '_1_prelu')(x)
x = tensorflow.keras.layers.ZeroPadding2D(padding=1, name=name + '_2_pad')(x)
x = tensorflow.keras.layers.Conv2D(filters, kernel_size, strides=stride, kernel_initializer='glorot_normal', use_bias=False, name=name + '_2_conv')(x)
x = tensorflow.keras.layers.BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + '_3_bn')(x)
x = tensorflow.keras.layers.Add(name=name + '_add')([shortcut, x])
return x
def stack1(x, filters, blocks, stride1=2, name=None):
x = block1(x, filters, stride=stride1, name=name + '_block1')
for i in range(2, blocks + 1):
x = block1(x, filters, conv_shortcut=False, name=name + '_block' + str(i))
return x
def stack_fn(x):
x = stack1(x, 64, 3, name='conv2')
x = stack1(x, 128, 4, name='conv3')
x = stack1(x, 256, 6, name='conv4')
return stack1(x, 512, 3, name='conv5')