-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
196 lines (165 loc) · 7.77 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import argparse
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
from src.helper_functions.helper_functions import mAP, CocoDetection, CutoutPIL, ModelEma, add_weight_decay
from src.models import create_model
# from src.loss_functions.losses import AsymmetricLoss
from src.loss_functions.partial_asymmetric_loss import PartialSelectiveLoss, ComputePrior
from randaugment import RandAugment
from torch.cuda.amp import GradScaler, autocast
from src.helper_functions.coco_simulation import simulate_coco
from src.helper_functions.get_data import get_data
parser = argparse.ArgumentParser(description='PyTorch MS_COCO Training')
parser.add_argument('--data', metavar='DIR', help='path to dataset', default='./data')
parser.add_argument('--metadata', type=str, default='./data/COCO_2014')
parser.add_argument('--lr', default=2e-4, type=float)
parser.add_argument('--epochs', default=30, type=int)
parser.add_argument('--stop_epoch', default=None, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--model-name', default='tresnet_m')
parser.add_argument('--model-path', default='./tresnet_m.pth', type=str)
parser.add_argument('--num-classes', default=80)
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--image-size', default=448, type=int,
metavar='N', help='input image size (default: 448)')
parser.add_argument('--simulate_partial_type', type=str, default=None, help="options are fpc or rps")
parser.add_argument('--simulate_partial_param', type=float, default=1000)
parser.add_argument('--partial_loss_mode', type=str, default="negative")
parser.add_argument('--clip', type=float, default=0)
parser.add_argument('--gamma_pos', type=float, default=0)
parser.add_argument('--gamma_neg', type=float, default=1)
parser.add_argument('--gamma_unann', type=float, default=2)
parser.add_argument('--alpha_pos', type=float, default=1)
parser.add_argument('--alpha_neg', type=float, default=1)
parser.add_argument('--alpha_unann', type=float, default=1)
parser.add_argument('--likelihood_topk', type=int, default=5)
parser.add_argument('--prior_path', type=str, default=None)
parser.add_argument('--prior_threshold', type=float, default=0.05)
parser.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 64)')
parser.add_argument('--print-freq', '-p', default=64, type=int,
metavar='N', help='print frequency (default: 64)')
parser.add_argument('--path_dest', type=str, default="./outputs")
parser.add_argument('--debug_mode', type=str, default="hyperml")
def main():
# ---------------------------------------------------------------------------------
# Preliminaries
args = parser.parse_args()
args.do_bottleneck_head = False
if not os.path.exists(args.path_dest):
os.makedirs(args.path_dest)
# ---------------------------------------------------------------------------------
# Setup model
print('creating model...')
model = create_model(args).cuda()
if args.model_path: # make sure to load pretrained ImageNet model
state = torch.load(args.model_path, map_location='cpu')
filtered_dict = {k: v for k, v in state['model'].items() if
(k in model.state_dict() and 'head.fc' not in k)}
model.load_state_dict(filtered_dict, strict=False)
print('done\n')
# ---------------------------------------------------------------------------------
train_loader, val_loader = get_data(args)
# Actuall Training
train_multi_label_coco(model, train_loader, val_loader, args)
def train_multi_label_coco(model, train_loader, val_loader, args):
print("Used parameters:")
print("Image_size:", args.image_size)
print("Learning_rate:", args.lr)
print("Epochs:", args.epochs)
ema = ModelEma(model, 0.9997) # 0.9997^641=0.82
prior = ComputePrior(train_loader.dataset.classes)
# set optimizer
Epochs = args.epochs
if args.stop_epoch is not None:
Stop_epoch = args.stop_epoch
else:
Stop_epoch = args.epochs
weight_decay = args.weight_decay
lr = args.lr
criterion = PartialSelectiveLoss(args)
# criterion = AsymmetricLoss(gamma_neg=4, gamma_pos=0, clip=0.05, disable_torch_grad_focal_loss=False)
parameters = add_weight_decay(model, weight_decay)
optimizer = torch.optim.Adam(params=parameters, lr=lr, weight_decay=0) # true wd, filter_bias_and_bn
steps_per_epoch = len(train_loader)
scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr, steps_per_epoch=steps_per_epoch, epochs=Epochs,
pct_start=0.2)
highest_mAP = 0
trainInfoList = []
scaler = GradScaler()
for epoch in range(Epochs):
if epoch > Stop_epoch:
break
for i, (inputData, target) in enumerate(train_loader):
inputData = inputData.cuda()
# target = target.max(dim=1)[0]
target = target.cuda()
with autocast(): # mixed precision
output = model(inputData).float()
loss = criterion(output, target)
model.zero_grad()
scaler.scale(loss).backward()
# loss.backward()
scaler.step(optimizer)
scaler.update()
# optimizer.step()
scheduler.step()
ema.update(model)
prior.update(output)
# store information
if i % 100 == 0:
trainInfoList.append([epoch, i, loss.item()])
print('Epoch [{}/{}], Step [{}/{}], LR {:.1e}, Loss: {:.1f}'
.format(epoch, Epochs, str(i).zfill(3), str(steps_per_epoch).zfill(3),
scheduler.get_last_lr()[0], \
loss.item()))
# Report prior
prior.save_prior()
prior.get_top_freq_classes()
# Save ckpt
try:
torch.save(model.state_dict(), os.path.join(args.path_dest, 'model-{}-{}.ckpt'.format(epoch + 1, i + 1)))
print("Model saved successfully.")
except:
print("Saving model failed.")
model.eval()
mAP_score = validate_multi(val_loader, model, ema)
model.train()
if mAP_score > highest_mAP:
highest_mAP = mAP_score
try:
torch.save(model.state_dict(), os.path.join(
'models/', 'model-highest.ckpt'))
except:
pass
print('current_mAP = {:.2f}, highest_mAP = {:.2f}\n'.format(mAP_score, highest_mAP))
def validate_multi(val_loader, model, ema_model):
print("starting validation")
Sig = torch.nn.Sigmoid()
preds_regular = []
preds_ema = []
targets = []
for i, (input, target) in enumerate(val_loader):
target = target
# target = target.max(dim=1)[0]
# compute output
with torch.no_grad():
with autocast():
output_regular = Sig(model(input.cuda())).cpu()
output_ema = Sig(ema_model.module(input.cuda())).cpu()
# for mAP calculation
preds_regular.append(output_regular.cpu().detach())
preds_ema.append(output_ema.cpu().detach())
targets.append(target.cpu().detach())
mAP_score_regular = mAP(torch.cat(targets).numpy(), torch.cat(preds_regular).numpy())
mAP_score_ema = mAP(torch.cat(targets).numpy(), torch.cat(preds_ema).numpy())
print("mAP score regular {:.2f}, mAP score EMA {:.2f}".format(mAP_score_regular, mAP_score_ema))
return max(mAP_score_regular, mAP_score_ema)
if __name__ == '__main__':
main()