You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@MangoFF,
I am also having trouble to apply the loss on other task. Values of the loss are very high around 3k-5k range. (Also loss doesn't decreases much from that range).
Not sure if loss is sensitive to default loss hyper parameter values or there's anything else wrong.
I also get NaNs when using ASL on a custom multi-label classification task. Everything seemed to work fine when I tested with gamma_neg=0, gamma_pos=0 and gamma_neg=2, gamma_pos=2. However, it seems that I get NaNs as soon as I choose gamma_neg to be larger than gamma_pos. Maybe an issue with numeric stability?
I also get NaNs when using ASL on a custom multi-label classification task. Everything seemed to work fine when I tested with gamma_neg=0, gamma_pos=0 and gamma_neg=2, gamma_pos=2. However, it seems that I get NaNs as soon as I choose gamma_neg to be larger than gamma_pos. Maybe an issue with numeric stability?
The Adam or AdamW is recommended as an optimizer, but the SGD is not recommended.
Why It always return nan?here is my log
(l1_loss): L1Loss()
(new_loss): AsymmetricLossOptimized()
(bcewithlog_loss): AsymmetricLossOptimized()
(iou_loss): IOUloss()
)
)
2022-04-20 13:03:33 | INFO | yolox.core.trainer:202 - ---> start train epoch1
2022-04-20 13:03:39 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 10/646, mem: 5053Mb, iter_time: 0.555s, data_time: 0.001s, total_loss: nan, iou_loss: 2.4, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 1.498e-10, size: 480, ETA: 4:28:59
2022-04-20 13:03:45 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 20/646, mem: 5571Mb, iter_time: 0.572s, data_time: 0.001s, total_loss: nan, iou_loss: 3.1, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 5.991e-10, size: 640, ETA: 4:33:02
2022-04-20 13:03:48 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 30/646, mem: 5571Mb, iter_time: 0.324s, data_time: 0.001s, total_loss: nan, iou_loss: 3.1, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 1.348e-09, size: 384, ETA: 3:54:11
2022-04-20 13:03:52 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 40/646, mem: 5571Mb, iter_time: 0.380s, data_time: 0.000s, total_loss: nan, iou_loss: 2.3, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 2.396e-09, size: 448, ETA: 3:41:30
2022-04-20 13:03:56 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 50/646, mem: 5571Mb, iter_time: 0.442s, data_time: 0.000s, total_loss: nan, iou_loss: 2.3, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 3.744e-09, size: 512, ETA: 3:39:53
2022-04-20 13:03:59 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 60/646, mem: 5571Mb, iter_time: 0.283s, data_time: 0.001s, total_loss: nan, iou_loss: 2.7, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 5.392e-09, size: 320, ETA: 3:25:58
2022-04-20 13:04:02 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 70/646, mem: 5571Mb, iter_time: 0.275s, data_time: 0.001s, total_loss: nan, iou_loss: 2.7, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 7.339e-09, size: 448, ETA: 3:15:28
2022-04-20 13:04:05 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 80/646, mem: 5571Mb, iter_time: 0.293s, data_time: 0.001s, total_loss: nan, iou_loss: 2.4, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 9.585e-09, size: 512, ETA: 3:08:40
2022-04-20 13:04:07 | INFO | yolox.core.trainer:260 - epoch: 1/45, iter: 90/646, mem: 5571Mb, iter_time: 0.228s, data_time: 0.001s, total_loss: nan, iou_loss: 2.5, l1_loss: 0.0, conf_loss: nan, cls_loss: 0.0, lr: 1.213e-08, size: 384, ETA: 2:59:52
The text was updated successfully, but these errors were encountered: