-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06-test_model.py
42 lines (36 loc) · 979 Bytes
/
06-test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import json
import pandas as pd
from parameters import PARAMETERS
from supervised_dna import (
ModelLoader,
DataGenerator,
)
KMER = PARAMETERS["KMER"]
BATCH_SIZE = PARAMETERS["BATCH_SIZE"]
CLADES = PARAMETERS["CLADES"]
BITS = PARAMETERS["BITS"]
MODEL = PARAMETERS["MODEL"]
# -1- Load model
loader = ModelLoader()
model = loader(MODEL, weights_path="checkpoint/cp.ckpt") # get compiled model from ./supervised_dna/models
# -2- Datasets
# load list of images for train and validation sets
with open("datasets.json","r") as f:
datasets = json.load(f)
list_test = datasets["test"]
config_generator = dict(
order_output_model = CLADES,
batch_size = BATCH_SIZE,
shuffle = False,
kmer = KMER,
bits = BITS,
)
ds_test = DataGenerator(
list_test,
**config_generator
)
# Evaluate model and save metrics
result = model.evaluate(ds_test)
pd.DataFrame(
dict(zip(model.metrics_names, result)), index=[0]) \
.to_csv("metrics_test.csv")