-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclost_diff.smk
327 lines (306 loc) · 10.7 KB
/
clost_diff.smk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os.path
import re
rule all:
input:
expand(
"output/cdifficile/slpa-basis.{msa}/{fa}/recgraph/{par}/full.csv",
msa=["mafft", "gappy", "sens"],
fa=["simulated"],
par=[
"mode_9-band_1-match_2-mism_4-open_4-ext_2-rec_4-recext_0.00001",
"mode_9-band_1-match_2-mism_4-open_4-ext_2-rec_28-recext_0.00001"
]
),
expand(
"output/cdifficile/slpa-basis.{msa}/{fa}/jali/{mat}-{par}/full.csv",
msa=["mafft", "gappy", "sens"],
fa=["simulated"],
mat=["CUSTOM_MAT"],
par=[
"open_4-ext_2-rec_4",
"open_4-ext_2-rec_28",
"open_4-ext_2-rec_40",
"open_4-ext_2-rec_48",
"open_4-ext_0-rec_4",
"open_4-ext_0-rec_28",
"open_4-ext_0-rec_40",
"open_4-ext_0-rec_48"
]
)
output:
"output/cdifficile/full.csv"
conda: "envs/csvkit.yaml"
shell:
"""
MYFI=""
MYGR=""
for f in {input:q}; do MYFI="$MYFI $f"; MYGR="$MYGR,${{f#output\/cdifficile\/}}"; done
csvstack -g ${{MYGR#,}} $MYFI > {output}
"""
rule simulated_recgraph_alone:
input:
expand(
"output/cdifficile/slpa-basis.{msa}/{fa}/recgraph/{par}/full.csv",
msa=["mafft"],
fa=["simulated"],
par=[
"mode_9-band_0.95-match_2-mism_4-open_4-ext_2-rec_4-recext_0.1"
]
)
output:
"output/cdifficile/simulated_recgraph_alone.csv"
conda: "envs/csvkit.yaml"
shell:
"""
MYFI=""
MYGR=""
for f in {input:q}; do MYFI="$MYFI $f"; MYGR="$MYGR,${{f#output\/cdifficile\/}}"; done
csvstack -g ${{MYGR#,}} $MYFI > {output}
"""
rule download_jali:
output:
"bin/jali"
shadow: "shallow"
shell:
"""
wget https://bibiserv.cebitec.uni-bielefeld.de/applications/jali/resources/downloads/jali-1.3.src.tar.gz
tar xzf jali-1.3.src.tar.gz
cd jali1.3/
patch < ../scripts/jali_include.patch
make jali
cd ..
cp jali1.3/jali {output}
"""
rule build_recgraph:
output:
"bin/recgraph"
shadow: "shallow"
conda: "envs/rust.yaml"
threads: 4
shell:
"""
git clone https://github.com/AlgoLab/RecGraph.git
cd RecGraph/
git checkout ef684e8fe6a9cd1218f8e418aacf195f3702e3b7
cargo build --release --jobs {threads}
cd ..
cp RecGraph/target/release/recgraph {output}
"""
rule msa_auto:
input:
fa="data/cdifficile/slpa-basis.fa",
output:
msa="output/cdifficile/msa/slpa-basis.mafft.fa",
log:
out="output/cdifficile/msa/slpa-basis.mafft.log",
conda: "envs/mafft.yaml"
shell:
"""
mafft --auto {input.fa} > {output.msa} 2> {log.out}
"""
rule msa_gappy:
input:
fa="data/cdifficile/slpa-basis.fa",
output:
msa="output/cdifficile/msa/slpa-basis.gappy.fa",
log:
out="output/cdifficile/msa/slpa-basis.gappy.log",
conda: "envs/mafft.yaml"
shell:
"""
mafft --inputorder --anysymbol --allowshift --unalignlevel 0.8 --leavegappyregion --maxiterate 2 --retree 1 --globalpair {input.fa} > {output.msa} 2> {log.out}
"""
rule msa_sens:
input:
fa="data/cdifficile/slpa-basis.fa",
output:
msa="output/cdifficile/msa/slpa-basis.sens.fa",
log:
out="output/cdifficile/msa/slpa-basis.sens.log",
conda: "envs/mafft.yaml"
shell:
"""
mafft --maxiterate 1000 --globalpair --op 4 --ep 2 {input.fa} > {output.msa} 2> {log.out}
"""
rule make_graph:
input:
recgraph="bin/recgraph",
msa="output/cdifficile/msa/{basemsa}.fa",
output:
gfa="output/cdifficile/gfa/{basemsa}.sorted.wpaths.clean.gfa",
conda: "envs/make_graph.yaml"
threads: 4
shadow: "shallow"
shell:
"""
make_prg from_msa -F -i {input.msa} -o mprg -O g -t {threads}
python3 ./scripts/clean_gfa_from_ast.py mprg.prg.gfa > clean.gfa
python3 ./scripts/increment_gfa_idx.py clean.gfa > clean.incr.gfa
odgi build -g clean.incr.gfa -o clean.incr.gfa.og
odgi sort -i clean.incr.gfa.og -o clean.incr.tsorted.gfa.og
odgi view -i clean.incr.tsorted.gfa.og -g > sorted.gfa
python3 ./scripts/rm_indel_msa.py {input.msa} > noindels.fa
{input.recgraph} noindels.fa sorted.gfa > p.gaf
cp sorted.gfa sorted.wpaths.gfa
cut -f 1,6 p.gaf | while read idx p ; do echo -e "P\\t$idx\\t$(echo $p | cut -c 2- | sed "s/>/+,/g")+\\t*" ; done >> sorted.wpaths.gfa
python3 ./scripts/remove_nodes_not_in_a_path.py sorted.wpaths.gfa > {output.gfa}
"""
rule run_recgraph:
input:
recgraph="bin/recgraph",
fa = "output/cdifficile/split/{fa}/split.{seq}.fa",
gfa = "output/cdifficile/gfa/{msa}.sorted.wpaths.clean.gfa",
output:
gaf = "output/cdifficile/{msa}/{fa}/recgraph/mode_{mod}-band_{B}-match_{match}-mism_{mism}-open_{op}-ext_{ext}-rec_{rec}-recext_{recext}/split.{seq}.gaf",
threads: 1
resources:
mem="12GB"
shell:
"""
{input.recgraph} \
-m {wildcards.mod} -B {wildcards.B} \
-O {wildcards.op} -E {wildcards.ext} \
-R {wildcards.rec} -r {wildcards.recext} \
-M {wildcards.match} -X {wildcards.mism} \
{input.fa} {input.gfa} > {output.gaf}
"""
def aggregate_recgraph_input(wildcards):
checkpoint_output = checkpoints.split_seqs.get(**wildcards).output[0]
ret = expand(
"output/cdifficile/{msa}/{fa}/recgraph/mode_{mod}-band_{B}-match_{match}-mism_{mism}-open_{op}-ext_{ext}-rec_{rec}-recext_{recext}/split.{seq}.gaf",
**wildcards,
seq=glob_wildcards(os.path.join(checkpoint_output, "split.{seq}.fa")).seq
)
return sorted(ret)
rule merge_recgraph:
input:
aggregate_recgraph_input
output:
"output/cdifficile/{msa}/{fa}/recgraph/mode_{mod}-band_{B}-match_{match}-mism_{mism}-open_{op}-ext_{ext}-rec_{rec}-recext_{recext}/full.gaf",
threads: 1
shell:
"""
cat {input} > {output}
"""
rule make_csv:
input:
gaf = "output/cdifficile/{msa}/{fa}/recgraph/{par}/full.gaf",
output:
csv = "output/cdifficile/{msa}/{fa}/recgraph/{par}/full.csv",
run:
out = open(output.csv, 'w+')
print("ReadName,RecPaths,RecPos,Score,Displacement", file=out)
for line in open(input.gaf):
line = line.strip()
rid=line.split('\t')[0]
m = re.search(r'recombination path (\d+) (\d+)', line)
if m:
recpath=f"{int(m.group(1))+1}>{int(m.group(2))+1}"
bp=line.split('\t')[-1]
else:
m = re.search(r'best path: (\d+)', line)
if m:
recpath=f"{int(m.group(1))+1}"
else:
recpath=''
bp=''
m = re.search(r'score: (\d+)', line)
if m:
score=f"{m.group(1)}"
else:
score='-'
m = re.search(r'displacement: (\d+)', line)
if m:
displacement=f"{m.group(1)}"
else:
displacement=''
print(rid, recpath, bp, score, displacement, sep=',', file=out)
out.close()
checkpoint split_seqs:
input:
fa = "data/cdifficile/{fa}.fa",
output:
dir = directory("output/cdifficile/split/{fa}"),
shell:
"""
mkdir -p {output.dir}
awk 'BEGIN {{ NUM = -1 }} /^>/ {{NUM = NUM+1; F=sprintf("{output.dir}/split.%.4d.fa", NUM); print > F; next; }} {{print >> F;}}' < {input.fa}
"""
rule jali:
input:
jali = "bin/jali",
msa = "output/cdifficile/msa/{msa}.fa",
fa = "output/cdifficile/split/{fa}/split.{seq}.fa",
mat = "data/cdifficile/jali/{mat}",
output:
"output/cdifficile/{msa}/{fa}/jali/{mat}-open_{op}-ext_{ext}-rec_{rec}/split.{seq}.out",
shadow: "minimal"
threads: 1
resources:
mem="2GB"
shell:
"""
{input.jali} -p -w {input.mat} -i -{wildcards.op} -e -{wildcards.ext} -j -{wildcards.rec} {input.fa} {input.msa} > {output}
"""
def aggregate_input(wildcards):
checkpoint_output = checkpoints.split_seqs.get(**wildcards).output[0]
ret = expand(
"output/cdifficile/{msa}/{fa}/jali/{mat}-open_{op}-ext_{ext}-rec_{rec}/split.{seq}.out",
msa=wildcards.msa,
fa=wildcards.fa,
mat=wildcards.mat,
op=wildcards.op,
ext=wildcards.ext,
rec=wildcards.rec,
seq=glob_wildcards(os.path.join(checkpoint_output, "split.{seq}.fa")).seq
)
return ret
rule aggregate_jali:
input:
aggregate_input
output:
txt = "output/cdifficile/{msa}/{fa}/jali/{mat}-open_{op}-ext_{ext}-rec_{rec}/full.csv",
run:
out = open(output.txt, 'w')
print("ReadName,RecPaths,RecPos,Score,Displacement", file=out)
for f in sorted(input):
prev = None
seqs = []
nextline = False
seqname = None
for line in open(f):
line = line.rstrip()
if nextline and seqname is None:
seqname = line.split(" ")[0]
nextline = False
if line.startswith(" "):
prev = line
if line.startswith("SequenceNo"):
nums = None
line = line[13:]
if prev is None:
nums = [int(c) for c in line]
else:
prev = prev[13:]
nums = [10*int(0 if d == " " else d) + int(c) for d,c in zip(prev,line)]
prev = None
seqs += nums
nextline = True
if line.startswith("The optimal alignment score is "):
m = re.search(r'The optimal alignment score is (\d+) using (\d+)', line)
if m:
score=f"{m.group(1)}"
nseq=f"{m.group(2)}"
else:
score='-'
nseq='-'
pos = 0
recs = []
outp = [str(seqs[0])]
for i,j in zip(seqs, seqs[1:]):
if i != j:
recs.append(str(pos))
outp.append(str(j))
pos += 1
print(seqname, ">".join(outp), "-".join(recs), score, nseq, sep=",", file=out)
out.close()