-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
70 lines (60 loc) · 2.1 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from types import SimpleNamespace
import os
from flax.training import checkpoints
import jax.numpy as jnp
import jax
import matplotlib.pyplot as plt
import logger
from gan import (
CycleGan,
create_generator_state,
generator_prediction,
)
from train import create_lr_schedule_fn
from img_utils import array_to_img, img_to_array
def predict(model_opts, start: str, save_img=True, plt_img=False):
model_opts = SimpleNamespace(**model_opts)
filename = model_opts.data_path
end = "B" if start == "A" else "A"
real_data = jnp.expand_dims(img_to_array(filename), axis=0)
os.system(f"mkdir -p {model_opts.pred_img_path}")
# Restore states
logger.info("Restoring states...")
key = jax.random.PRNGKey(1337)
model = CycleGan(model_opts)
key, g_state = create_generator_state(
key,
model,
model_opts.input_shape,
create_lr_schedule_fn(model_opts, 1),
model_opts.beta1,
) # contain apply_fn=None, params of both G_A and G_B, and optimizer
g_state = checkpoints.restore_checkpoint(
model_opts.checkpoint_directory_G, target=g_state
)
logger.info(f"Generating {model_opts.model_name} prediction, {start} to {end}")
key, generated_data = generator_prediction(key, model, g_state, real_data, start)
fake, recover = generated_data
# Write latest generated images from validation set to disk
if save_img:
array_to_img(
fake[0],
os.path.join(
model_opts.pred_img_path,
f"fake_{end}_{filename.split('/')[-1][:-4]}.jpg",
),
)
array_to_img(
recover[0],
os.path.join(
model_opts.pred_img_path,
f"recover_{start}_{filename.split('/')[-1][:-4]}.jpg",
),
)
# Plot latest generated images from validation set in Jupyter notebook
if plt_img:
fig, ax = plt.subplots(1, 2)
ax[0, 0] = ax.imshow(fake[0])
ax[0, 0].title.set_text(f"Fake {end}")
ax[0, 1] = ax.imshow(recover[0])
ax[0, 1].title.set_text(f"Recover {start}")