-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_script.py
56 lines (39 loc) · 1.82 KB
/
plot_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import matplotlib.pyplot as plt
import pickle
plt_legend_dict = {"expected_sarsa_agent": "Expected SARSA with neural network",
"random_agent": "Random"}
path_dict = {"expected_sarsa_agent": "results/",
"random_agent": "./"}
plt_label_dict = {"expected_sarsa_agent": "Sum of\nreward\nduring\nepisode"}
def smooth(data, k):
num_episodes = data.shape[1]
num_runs = data.shape[0]
smoothed_data = np.zeros((num_runs, num_episodes))
for i in range(num_episodes):
if i < k:
smoothed_data[:, i] = np.mean(data[:, :i+1], axis = 1)
else:
smoothed_data[:, i] = np.mean(data[:, i-k:i+1], axis = 1)
return smoothed_data
# Function to plot result
def plot_result(data_name_array):
plt_agent_sweeps = []
fig, ax = plt.subplots(figsize=(8,6))
for data_name in data_name_array:
# load data
filename = 'sum_reward_{}'.format(data_name).replace('.','')
sum_reward_data = np.load('{}/{}.npy'.format(path_dict[data_name], filename))
# smooth data
smoothed_sum_reward = smooth(data = sum_reward_data, k = 100)
mean_smoothed_sum_reward = np.mean(smoothed_sum_reward, axis = 0)
plot_x_range = np.arange(0, mean_smoothed_sum_reward.shape[0])
graph_current_agent_sum_reward, = ax.plot(plot_x_range, mean_smoothed_sum_reward[:], label=plt_legend_dict[data_name])
plt_agent_sweeps.append(graph_current_agent_sum_reward)
ax.legend(handles=plt_agent_sweeps, fontsize = 13)
ax.set_title("Learning Curve", fontsize = 15)
ax.set_xlabel('Episodes', fontsize = 14)
ax.set_ylabel(plt_label_dict[data_name_array[0]], rotation=0, labelpad=40, fontsize = 14)
ax.set_ylim([-300, 300])
plt.tight_layout()
plt.show()