forked from ivansipiran/grafica
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathex_curves.py
108 lines (71 loc) · 2.61 KB
/
ex_curves.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# coding=utf-8
"""Hermite and Bezier curves using python, numpy and matplotlib"""
import numpy as np
import matplotlib.pyplot as mpl
from mpl_toolkits.mplot3d import Axes3D
__author__ = "Daniel Calderon"
__license__ = "MIT"
def generateT(t):
return np.array([[1, t, t**2, t**3]]).T
def hermiteMatrix(P1, P2, T1, T2):
# Generate a matrix concatenating the columns
G = np.concatenate((P1, P2, T1, T2), axis=1)
# Hermite base matrix is a constant
Mh = np.array([[1, 0, -3, 2], [0, 0, 3, -2], [0, 1, -2, 1], [0, 0, -1, 1]])
return np.matmul(G, Mh)
def bezierMatrix(P0, P1, P2, P3):
# Generate a matrix concatenating the columns
G = np.concatenate((P0, P1, P2, P3), axis=1)
# Bezier base matrix is a constant
Mb = np.array([[1, -3, 3, -1], [0, 3, -6, 3], [0, 0, 3, -3], [0, 0, 0, 1]])
return np.matmul(G, Mb)
def plotCurve(ax, curve, label, color=(0,0,1)):
xs = curve[:, 0]
ys = curve[:, 1]
zs = curve[:, 2]
ax.plot(xs, ys, zs, label=label, color=color)
# M is the cubic curve matrix, N is the number of samples between 0 and 1
def evalCurve(M, N):
# The parameter t should move between 0 and 1
ts = np.linspace(0.0, 1.0, N)
# The computed value in R3 for each sample will be stored here
curve = np.ndarray(shape=(N, 3), dtype=float)
for i in range(len(ts)):
T = generateT(ts[i])
curve[i, 0:3] = np.matmul(M, T).T
return curve
if __name__ == "__main__":
"""
Example for Hermite curve
"""
P1 = np.array([[0, 0, 1]]).T
P2 = np.array([[1, 0, 0]]).T
T1 = np.array([[10, 0, 0]]).T
T2 = np.array([[0, 10, 0]]).T
GMh = hermiteMatrix(P1, P2, T1, T2)
print(GMh)
# Number of samples to plot
N = 50
hermiteCurve = evalCurve(GMh, N)
# Setting up the matplotlib display for 3D
fig = mpl.figure()
ax = fig.gca(projection='3d')
plotCurve(ax, hermiteCurve, "Hermite curve", (1,0,0))
"""
Example for Bezier curve
"""
R0 = np.array([[0, 0, 1]]).T
R1 = np.array([[0, 1, 0]]).T
R2 = np.array([[1, 0, 1]]).T
R3 = np.array([[1, 1, 0]]).T
GMb = bezierMatrix(R0, R1, R2, R3)
bezierCurve = evalCurve(GMb, N)
plotCurve(ax, bezierCurve, "Bezier curve")
# Adding a visualization of the control points
controlPoints = np.concatenate((R0, R1, R2, R3), axis=1)
ax.scatter(controlPoints[0,:], controlPoints[1,:], controlPoints[2,:], color=(1,0,0))
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.legend()
mpl.show()