forked from elinorwahl/ai-classical-planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_utils.py
161 lines (120 loc) · 5.24 KB
/
_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from itertools import product
from timeit import default_timer as timer
from aimacode.logic import associate
from aimacode.search import InstrumentedProblem
from aimacode.utils import expr
class PrintableProblem(InstrumentedProblem):
""" InstrumentedProblem keeps track of stats during search, and this class
modifies the print output of those statistics for air cargo problems.
"""
def __repr__(self):
return '{:^10d} {:^10d} {:^10d} {:^10d}'.format(
len(self.problem.actions_list), self.succs, self.goal_tests, self.states)
def run_search(problem, search_function, parameter=None):
ip = PrintableProblem(problem)
start = timer()
if parameter is not None:
node = search_function(ip, parameter)
else:
node = search_function(ip)
end = timer()
print("\n# Actions Expansions Goal Tests New Nodes")
print("{}\n".format(ip))
show_solution(node, end - start)
print()
def show_solution(node, elapsed_time):
print("Plan length: {} Time elapsed in seconds: {}".format(len(node.solution()), elapsed_time))
for action in node.solution():
print("{}{}".format(action.name, action.args))
def create_expressions(str_list):
""" Converts a list of strings into a list of Expr objects """
return [expr(s) for s in str_list]
def make_relations(name, *args, key=lambda x: True):
""" Map the arguments to expressions. the first positional arg is used as the expression name
and all remaining expressions are used as arguments.
Expressions are made over the cartesian product of the positional arguments after the name.
The expressions can be filtered by supplying a function `key` that takes a length k tuple
and returns a boolean False for the elements that should be excluded, where k is the number
of positional arguments after "name".
Example
-------
>>> make_relations("At", ["Cargo1", "PlaneA"], ["Airport1"])
[expr(At(Cargo1, Airport1)), expr(At(PlaneA, Airport1))]
To filter out the expressions for Airport1, use:
>>> make_relations("At", ["Cargo1", "PlaneA"], ["Airport1", "Airport2"], key=lambda x: x[-1].endswith("2"))
[expr(At(Cargo1, Airport2)), expr(At(PlaneA, Airport2))]
See additional examples in example_have_cake.py and air_cargo_problems.py
"""
return create_expressions("{}({})".format(name, ", ".join(c)) for c in product(*args) if key(c))
class FluentState:
""" Represent planning problem states as positive and negative fluents """
def __init__(self, pos_list, neg_list):
self.pos = list(pos_list)
self.neg = list(neg_list)
def sentence(self):
return expr(conjunctive_sentence(self.pos, self.neg))
def pos_sentence(self):
return expr(conjunctive_sentence(self.pos, []))
def conjunctive_sentence(pos_list, neg_list):
""" Express a state as a conjunctive sentence from positive and negative fluent lists
Parameters
----------
pos_list:
an iterable collection of strings or Expr representing fluent literals that
are True in the current state
neg_list:
an iterable collection of strings or Expr representing fluent literals that
are False in the current state
Returns
-------
A conjunctive sentence (i.e., a sequence of clauses connected by logical AND)
e.g. "At(C1, SFO) ∧ ~At(P1, SFO)"
"""
clauses = []
for f in pos_list:
clauses.append(expr("{}".format(f)))
for f in neg_list:
clauses.append(expr("~{}".format(f)))
return associate('&', clauses)
def encode_state(fs, fluent_map):
""" Convert a FluentState (list of positive fluents and negative fluents) into
an ordered sequence of True/False values.
It is sometimes convenient to encode a problem in terms of the specific
fluents that are True or False in a state, but other times it is easier (or faster)
to perform computations on an an array of booleans.
Parameters
----------
fs: FluentState
A state object represented as a FluentState
fluent_map:
An ordered sequence of fluents
Returns
-------
tuple of True/False elements corresponding to the fluents in fluent_map
"""
return tuple([f in fs.pos for f in fluent_map])
def decode_state(state, fluent_map):
""" Convert an ordered list of True/False values into a FluentState
(list of positive fluents and negative fluents)
It is sometimes convenient to encode a problem in terms of the specific
fluents that are True or False in a state, but other times it is easier (or faster)
to perform computations on an an array of booleans.
Parameters
----------
state:
A state represented as an ordered sequence of True/False values
fluent_map:
An ordered sequence of fluents
Returns
-------
FluentState instance containing the fluents from fluent_map corresponding to True
entries from the input state in the pos_list, and containing the fluents from
fluent_map corresponding to False entries in the neg_list
"""
fs = FluentState(set(), set())
for idx, elem in enumerate(state):
if elem:
fs.pos.append(fluent_map[idx])
else:
fs.neg.append(fluent_map[idx])
return fs