-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathVID_Trans_ReID.py
242 lines (188 loc) · 8 KB
/
VID_Trans_ReID.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from Dataloader import dataloader
from VID_Trans_model import VID_Trans
from Loss_fun import make_loss
import random
import torch
import numpy as np
import os
import argparse
import logging
import os
import time
import torch
import torch.nn as nn
from torch_ema import ExponentialMovingAverage
from torch.cuda import amp
import torch.distributed as dist
from utility import AverageMeter, optimizer,scheduler
from torch.autograd import Variable
def evaluate(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=21):
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
indices = np.argsort(distmat, axis=1)
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
all_cmc = []
all_AP = []
num_valid_q = 0.
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
keep = np.invert(remove)
# compute cmc curve
orig_cmc = matches[q_idx][keep] # binary vector, positions with value 1 are correct matches
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i+1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc).astype(np.float32)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
return all_cmc, mAP
def test(model, queryloader, galleryloader, pool='avg', use_gpu=True, ranks=[1, 5, 10, 20]):
model.eval()
qf, q_pids, q_camids = [], [], []
with torch.no_grad():
for batch_idx, (imgs, pids, camids,_) in enumerate(queryloader):
if use_gpu:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
b, s, c, h, w = imgs.size()
features = model(imgs,pids,cam_label=camids )
features = features.view(b, -1)
features = torch.mean(features, 0)
features = features.data.cpu()
qf.append(features)
q_pids.append(pids)
q_camids.extend(camids)
qf = torch.stack(qf)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids,_) in enumerate(galleryloader):
if use_gpu:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
b, s,c, h, w = imgs.size()
features = model(imgs,pids,cam_label=camids)
features = features.view(b, -1)
if pool == 'avg':
features = torch.mean(features, 0)
else:
features, _ = torch.max(features, 0)
features = features.data.cpu()
gf.append(features)
g_pids.append(pids)
g_camids.extend(camids)
gf = torch.stack(gf)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("Computing distance matrix")
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
gf = gf.numpy()
qf = qf.numpy()
print("Original Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
# print("Results ---------- {:.1%} ".format(distmat_rerank))
print("Results ---------- ")
print("mAP: {:.1%} ".format(mAP))
print("CMC curve r1:",cmc[0])
return cmc[0], mAP
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="VID-Trans-ReID")
parser.add_argument(
"--Dataset_name", default="", help="The name of the DataSet", type=str)
args = parser.parse_args()
Dataset_name=args.Dataset_name
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
torch.cuda.manual_seed_all(1234)
np.random.seed(1234)
random.seed(1234)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
train_loader, num_query, num_classes, camera_num, view_num,q_val_set,g_val_set = dataloader(Dataset_name)
model = VID_Trans( num_classes=num_classes, camera_num=camera_num,pretrainpath=pretrainpath)
loss_fun,center_criterion= make_loss( num_classes=num_classes)
optimizer_center = torch.optim.SGD(center_criterion.parameters(), lr= 0.5)
optimizer= optimizer( model)
scheduler = scheduler(optimizer)
scaler = amp.GradScaler()
#Train
device = "cuda"
epochs = 120
model=model.to(device)
ema = ExponentialMovingAverage(model.parameters(), decay=0.995)
loss_meter = AverageMeter()
acc_meter = AverageMeter()
cmc_rank1=0
for epoch in range(1, epochs + 1):
start_time = time.time()
loss_meter.reset()
acc_meter.reset()
scheduler.step(epoch)
model.train()
for Epoch_n, (img, pid, target_cam,labels2) in enumerate(train_loader):
optimizer.zero_grad()
optimizer_center.zero_grad()
img = img.to(device)
pid = pid.to(device)
target_cam = target_cam.to(device)
labels2=labels2.to(device)
with amp.autocast(enabled=True):
target_cam=target_cam.view(-1)
score, feat ,a_vals= model(img, pid, cam_label=target_cam)
labels2=labels2.to(device)
attn_noise = a_vals * labels2
attn_loss = attn_noise.sum(1).mean()
loss_id ,center= loss_fun(score, feat, pid, target_cam)
loss=loss_id+ 0.0005*center +attn_loss
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
ema.update()
for param in center_criterion.parameters():
param.grad.data *= (1. / 0.0005)
scaler.step(optimizer_center)
scaler.update()
if isinstance(score, list):
acc = (score[0].max(1)[1] == pid).float().mean()
else:
acc = (score.max(1)[1] == pid).float().mean()
loss_meter.update(loss.item(), img.shape[0])
acc_meter.update(acc, 1)
torch.cuda.synchronize()
if (Epoch_n + 1) % 50 == 0:
print("Epoch[{}] Iteration[{}/{}] Loss: {:.3f}, Acc: {:.3f}, Base Lr: {:.2e}"
.format(epoch, (Epoch_n + 1), len(train_loader),
loss_meter.avg, acc_meter.avg, scheduler._get_lr(epoch)[0]))
if (epoch+1)%10 == 0 :
model.eval()
cmc,map = test(model, q_val_set,g_val_set)
print('CMC: %.4f, mAP : %.4f'%(cmc,map))
if cmc_rank1 < cmc:
cmc_rank1=cmc
torch.save(model.state_dict(),os.path.join('/VID-Trans-ReID', Dataset_name+'Main_Model.pth'))