-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmermean_1fl_smpf.py
130 lines (95 loc) · 4.38 KB
/
mermean_1fl_smpf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
""" Quick'n'dirty script to calculate ymean of Channel experiments."""
from netCDF4 import Dataset
import numpy as np
import os
nh = 3
if __name__ == '__main__':
#define staggered,unstaggered and 2D vars
ustagvars = ['U','T','P','QV','QC','QI','QR','QS','QG']
stagvars = ['HHL','W','EFLUX','HFLUX']
D2vars = ['CAPE_ML','CIN_ML','LCL_ML','HPBL','TOT_PREC','CAPE_MU','CIN_MU','CAPE_CON','TQC']
Ztypelist = {'ustag': ustagvars,'stag':stagvars,'2D':D2vars}
# define dimensions for the grid variable types
dimlist = {
'ustag': ('t','Z','X'),
'stag':('t','Z1','X'),
'2D': ('t','X')
}
# identify COSMO output data
BASE = '/scratch/snx1600/adeli/project_smpf/'
G7U0 = '4096x256_7Kkm_U0_2km'
G7U5 = '4096x256_7Kkm_U5_2km'
G7U1 = '4096x256_7Kkm_U1_2km'
G7U10 = '4096x256_7Kkm_U10_2km'
G7U20 = '4096x256_7Kkm_U20_2km'
ch_gauss = 'h1000a20_gauss'
ch_bell = 'h1000a20_bell'
WEXPs = [G7U0,G7U1,G7U5,G7U10]
OEXPs = ['h1000a20_gauss']
SMEXPs = ['60_30strip_strw128','60_30strip_strw256','60_30strip_strw64','60_60','60_90strip_strw128','60_90strip_strw256','60_90strip_strw64']
SMEXPs = ['30_30h0a0','60_30h0a0_strip_strw128','60_30h0a0_strip_strw256','60_30h0a0_strip_strw64',
'60_60h0a0','60_90h0a0_strip_strw128','60_90h0a0_strip_strw256','60_90h0a0_strip_strw64','90_90h0a0']
SMEXPs = ['30_30h1000a20_gauss','60_60h1000a20_gauss','90_90h1000a20_gauss']
for WEXP in WEXPs:
for OEXP in OEXPs:
for SMEXP in SMEXPs:
seedn=filter(lambda x: x.startswith('seed'),os.listdir(BASE+WEXP+'/rawfiles/'+OEXP+'/'+SMEXP+'/'))[0]
SRCPATH = BASE+WEXP+'/rawfiles/'+OEXP+'/'+SMEXP+'/'+seedn+'/output/'
TARPATH = BASE+WEXP+'/postprocessing/composites/ALLVAR_3D/'+OEXP+'/'+SMEXP+'/'
print SRCPATH
print TARPATH
datalist = filter(lambda x: x.startswith('lfff'),os.listdir(SRCPATH))
datalist.sort() # sort by time
# check if simulation produced all the necessary output
# daint file system check
if len(datalist)!=241:
print "***********"
print SRCPATH
print "skipped"
print "***********"
continue
# create and prepare new data set
newdatan = 'ymean.nc'
try:
print os.listdir(SRCPATH)
print WEXP, OEXP,SMEXP
newdata = Dataset(TARPATH+newdatan,'w')
except IOError:
print TARPATH
print "Not exist"
continue
# copy dimensions
newdata.createDimension('t')
newdata.createDimension('X',2048)
newdata.createDimension('Z',50) # unstaggered grid
newdata.createDimension('Z1',51) # staggered grid
# create rlon
i = 0
for datan in datalist[:]:
data = Dataset(SRCPATH+datan)
# iterate over Ztypes:
for varzt in Ztypelist:
dims = dimlist[varzt]
for varn in Ztypelist[varzt]:
print varn,varzt,i
# UGLY selection of grid extraction
if varzt=='2D':
vardata = data.variables[varn][:,nh:-nh,nh:-nh]
yaxidx = 1
else:
vardata = data.variables[varn][:,:,nh:-nh,nh:-nh]
yaxidx = 2
# Create Variable at first time only
if i==0:
varz = newdata.createVariable(varn,float,dims)
else:
varz = newdata.variables[varn]
# Calculate ymean and save
varz[i,:] = np.mean(vardata[:],axis=yaxidx)
data.close()
# increment output time step
i+=1
# quick check for debugging
if i==242:
break
newdata.close()