-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
234 lines (196 loc) · 7.68 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os
import io
import numpy as np
import streamlit as st
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import torch
from PIL import Image
from skimage.io import imread
import torch.nn.functional as F
from training.metrics import *
from training.seg_models import *
from training.image_preprocessing import ImagePadder
from training.logger_utils import load_dict_from_json
from training.dataset import get_dataloader_for_inference
def run_inference(
image_array,
file_weights,
num_classes=5,
file_stats_json="training/image_stats.json",
):
"""
---------
Arguments
---------
image_array : ndarray
a numpy array of the image
file_weights : str
full path to weights file
num_classes : int
number of classes in the dataset
file_stats_json : str
full path to the json stats file for preprocessing
-------
Returns
-------
pred_mask_arr : ndarray
a numpy array of the prediction mask
"""
oil_spill_seg_model = ResNet50DeepLabV3Plus(
num_classes=num_classes, pretrained=True
)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
oil_spill_seg_model.to(device)
oil_spill_seg_model.load_state_dict(torch.load(file_weights, map_location=device))
oil_spill_seg_model.eval()
dict_label_to_color_mapping = {
0: np.array([0, 0, 0]),
1: np.array([0, 255, 255]),
2: np.array([255, 0, 0]),
3: np.array([153, 76, 0]),
4: np.array([0, 153, 0]),
}
try:
dict_stats = load_dict_from_json(file_stats_json)
except:
dir_json = os.path.dirname(os.path.realpath(__file__))
dict_stats = load_dict_from_json(os.path.join(dir_json, file_stats_json))
try:
image_padder = ImagePadder("/data/images")
except:
image_padder = ImagePadder("./sample_padding_image_for_inference")
# apply padding and preprocessing
image_padded = image_padder.pad_image(image_array)
image_preprocessed = image_padded / 255.0
image_preprocessed = image_preprocessed - dict_stats["mean"]
image_preprocessed = image_preprocessed / dict_stats["std"]
image_preprocessed = np.expand_dims(image_preprocessed, axis=0)
# NCHW format
image_preprocessed = np.transpose(image_preprocessed, (0, 3, 1, 2))
image_tensor = torch.tensor(image_preprocessed).float()
image_tensor = image_tensor.to(device, dtype=torch.float)
pred_logits = oil_spill_seg_model(image_tensor)
pred_probs = F.softmax(pred_logits, dim=1)
pred_label = torch.argmax(pred_probs, dim=1)
pred_label_arr = pred_label.detach().cpu().numpy()
pred_label_arr = np.squeeze(pred_label_arr)
pred_label_one_hot = np.eye(num_classes)[pred_label_arr]
pred_mask_arr = np.zeros((pred_label_arr.shape[0], pred_label_arr.shape[1], 3))
for sem_class in range(num_classes):
curr_class_label = pred_label_one_hot[:, :, sem_class]
curr_class_label = curr_class_label.reshape(
pred_label_one_hot.shape[0], pred_label_one_hot.shape[1], 1
)
curr_class_color_mapping = dict_label_to_color_mapping[sem_class]
curr_class_color_mapping = curr_class_color_mapping.reshape(
1, curr_class_color_mapping.shape[0]
)
pred_mask_arr += curr_class_label * curr_class_color_mapping
pred_label_arr = pred_label_arr.astype(np.uint8)
pred_mask_arr = pred_mask_arr.astype(np.uint8)
padded_height, padded_width = pred_label_arr.shape
pred_mask_arr = pred_mask_arr[11 : padded_height - 11, 15 : padded_width - 15]
return pred_mask_arr
def show_mask_interpretation():
colors = ["#000000", "#00FFFF", "#FF0000", "#994C00", "#009900"]
labels = ["sea_surface", "oil_spill", "oil_spill_look_alike", "ship", "land"]
my_cmap = ListedColormap(colors, name="my_cmap")
data = [[1, 2, 3, 4, 5]]
fig = plt.figure(figsize=(20, 2))
plt.title("Oil Spill mask interpretation")
plt.xticks(ticks=np.arange(len(labels)), labels=labels)
plt.yticks([])
plt.imshow(data, cmap=my_cmap)
st.pyplot(fig)
return
def infer():
st.title("Oil spill detection app")
# file_weights_default = "/home/abhishek/Desktop/RUG/htsm_masterwork/resnet_patch_padding_sgd/fold_5/resnet_50_deeplab_v3+/oil_spill_seg_resnet_50_deeplab_v3+_80.pt"
file_weights_default = "/data/models/oil_spill_seg_resnet_50_deeplab_v3+_80.pt"
file_weights = st.sidebar.text_input("File model weights", file_weights_default)
if not os.path.isfile(file_weights):
st.write("Wrong weights file path")
else:
st.write(f"Weights file: {file_weights}")
# select an input SAR image file
image_file_buffer = st.sidebar.file_uploader(
"Select input SAR image", type=["jpg", "jpeg"]
)
# read the image
if image_file_buffer is not None:
image = Image.open(image_file_buffer)
image_array = np.array(image)
st.image(image_array, caption=f"Input image: {image_file_buffer.name}")
else:
st.write("Input image: not selected")
# select a mask image file
mask_file_buffer = st.sidebar.file_uploader(
"Select groundtruth mask image (optional, only for visual comparison with the prediction)",
type=["png"],
)
# read the mask
if mask_file_buffer is not None:
mask = Image.open(mask_file_buffer)
mask_array = np.array(mask)
st.image(mask_array, caption=f"Mask image: {mask_file_buffer.name}")
else:
st.write("Groundtruth mask image (optional): not selected")
# run inference when the option is invoked by the user
infer_button = st.sidebar.button("Run inference")
if infer_button:
mask_predicted = run_inference(image_array, file_weights)
st.image(
mask_predicted,
caption=f"Predicted mask for the input: {image_file_buffer.name}",
)
# option to download predicted mask
mask_pred_image = Image.fromarray(mask_predicted.astype("uint8"), "RGB")
with io.BytesIO() as file_obj:
mask_pred_image.save(file_obj, format="PNG")
mask_for_download = file_obj.getvalue()
st.download_button(
"Download predicted mask",
data=mask_for_download,
file_name="pred_mask.png",
mime="image/png",
)
# display a figure showing the interpretation of the mask labels
show_mask_interpretation()
return
def app_info():
st.title("App info")
st.markdown("_Task - Oil Spill segmentation_")
st.markdown(
"_Project repo - [https://github.com/AbhishekRS4/HTSM_Oil_Spill_Segmentation](https://github.com/AbhishekRS4/HTSM_Oil_Spill_Segmentation)_"
)
st.markdown(
"_Dataset - [Oil Spill detection dataset](https://m4d.iti.gr/oil-spill-detection-dataset/)_"
)
st.header("Brief description of the project and the dataset")
st.write(
"The Oil Spill detection dataset contains images extracted from satellite Synthetic Aperture Radar (SAR) data."
)
st.write(
"This dataset contains labels for 5 classes --- sea_surface, oil_spill, oil_spill_look_alike, ship, and land."
)
st.write(
"A custom encoder-decoder architecture is modeled for the segmentation task."
)
st.write("The best performing model has been used for the deployed application.")
return
app_modes = {
"App Info": app_info,
"Oil Spill Inference App": infer,
}
def start_app():
selected_mode = st.sidebar.selectbox("Select mode", list(app_modes.keys()))
app_modes[selected_mode]()
return
def main():
start_app()
return
if __name__ == "__main__":
main()