-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsfr.py
715 lines (634 loc) · 24.7 KB
/
sfr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
#!/usr/bin/env python3
import logging
from typing import Optional, Tuple
import numpy as np
import torch
import torch.distributions as dists
import torch.nn as nn
from torch.func import functional_call, jacrev, vmap
from torch.utils.data import DataLoader, TensorDataset
import likelihoods
import priors
from custom_types import (
NTK,
Alpha,
AlphaInducing,
Beta,
BetaDiag,
BetaInducing,
Data,
FuncData,
FuncMean,
FuncVar,
InputData,
Lambda,
OutputData,
TestInput,
)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SFR(nn.Module):
def __init__(
self,
network: torch.nn.Module,
prior: priors.Prior,
likelihood: likelihoods.Likelihood,
output_dim: int,
num_inducing: int = 30,
dual_batch_size: Optional[int] = None, # batch size use for daul param calc
jitter: float = 1e-6,
device: str = "cpu",
):
super().__init__()
network.to(device)
self.network = network
self.prior = prior
self.likelihood = likelihood
self.output_dim = output_dim
self.num_inducing = num_inducing
self.dual_batch_size = dual_batch_size
self.jitter = jitter
self.device = device
if isinstance(self.prior, priors.Gaussian):
self._prior_precision = self.prior.prior_precision
else:
raise NotImplementedError(
"what should prior_precision be if not using Gaussian prior???"
)
def __call__(
self,
x: InputData,
pred_type: str = "gp", # "gp" or "nn"
num_samples: int = 100,
):
if x.dtype == torch.float32: # Make inputs double
x = x.to(torch.float64)
f_mean, f_var = self.predict_f(x, full_cov=False)
if pred_type in "nn":
f_mean = self.network(x)
if isinstance(self.likelihood, likelihoods.CategoricalLh):
return self.likelihood(f_mean=f_mean, f_var=f_var, num_samples=num_samples)
else:
return self.likelihood(f_mean=f_mean, f_var=f_var)
@torch.no_grad()
def predict_f(
self, x, full_cov: Optional[bool] = False
) -> Tuple[FuncMean, FuncVar]:
if x.dtype == torch.float32: # Make inputs double
x = x.to(torch.float64)
Kxx = self.kernel(x, x, full_cov=full_cov).detach().cpu()
Kxz = self.kernel(x, self.Z).detach().cpu()
f_mean = (Kxz @ self.alpha_u[..., None])[..., 0].T / (
self.prior_precision * self.num_data
)
if full_cov:
# raise NotImplementedError
# TODO tmp could be computed before
tmp = torch.linalg.solve(self.Kzz, self.Iz) - torch.linalg.solve(
self.beta_u + self.Kzz, self.Iz
)
f_cov = (
Kxx - torch.matmul(torch.matmul(Kxz, tmp), torch.transpose(Kxz, -1, -2))
) / (self.prior_precision * self.num_data)
return f_mean, f_cov
else:
Kzx = torch.transpose(Kxz, -1, -2)
Am = torch.linalg.solve_triangular(
torch.transpose(self.Lm, -1, -2), Kzx, upper=False
)
Ab = torch.linalg.solve_triangular(
torch.transpose(self.Lb, -1, -2), Kzx, upper=False
)
f_var = (
Kxx - torch.sum(torch.square(Am), -2) + torch.sum(torch.square(Ab), -2)
) / (self.prior_precision * self.num_data)
return f_mean.to(self.device), f_var.T.to(self.device)
@torch.no_grad()
def predict_mean(self, x: TestInput) -> FuncMean:
if x.dtype == torch.float32: # Make inputs double
x = x.to(torch.float64)
x = x.to(self.Z.device)
Kxz = self.kernel(x, self.Z)
f_mean = (Kxz @ self.alpha_u[..., None])[..., 0].T / (
self.prior_precision * self.num_data
)
return f_mean
@torch.no_grad()
def fit(self, train_loader: DataLoader):
"""Fit local SFR approx at the networks parameters
1. Samples inducing points
2. Calculates dual parameters
3. Project dual parameters onto inducing points
3. Caches quantities for faster predictions
"""
# Extract data from DataLoader
X_train, Y_train = [], []
for data, target in train_loader:
X_train.append(data)
Y_train.append(target)
X_train = torch.concat(X_train, 0)
Y_train = torch.concat(Y_train, 0)
self.set_data(train_data=(X_train, Y_train))
@torch.no_grad()
def set_data(self, train_data: Data):
"""Fit local SFR approx at the networks parameters
1. Samples inducing points
2. Calculates dual parameters
3. Project dual parameters onto inducing points
3. Caches quantities for faster predictions
"""
X_train, Y_train = train_data
self.network.eval()
# Make the data/params double precision
self.network.double()
if X_train.dtype == torch.float32: # Make inputs double
X_train = X_train.double()
if Y_train.dtype == torch.float32: # Make regression outpus double
Y_train = Y_train.double()
# if isinstance(self.likelihood, likelihoods.CategoricalLh):
# train_data[1] = train_data[1].long()
assert X_train.shape[0] == Y_train.shape[0]
self._num_data = X_train.shape[0]
# Create data loader to handle data batching (for memory)
if self.dual_batch_size is None:
self.dual_batch_size = self.num_data
train_loader = DataLoader(
TensorDataset(X_train, Y_train),
batch_size=self.dual_batch_size,
shuffle=False,
)
# Sample inducing points from data
indices = torch.randperm(self.num_data)[: self.num_inducing]
self.Z = X_train[indices.to(X_train.device)].to(self.device)
# Build kernel
self.kernel = build_ntk(
network=self.network,
num_data=self.num_data,
output_dim=self.output_dim,
prior_precision=self.prior_precision,
scaled=False,
)
# Calculate dual parameters at data
logger.info("Calculating dual params...")
self.alpha, self.beta_diag, self.y_tilde = calc_dual_params(
network=self.network,
train_loader=train_loader,
likelihood=self.likelihood,
output_dim=self.output_dim,
device=self.device,
)
logger.info("Finished calculating dual params")
# Project dual parameters onto inducing points
logger.info("Project dual params onto inducing points...")
(
self.alpha_u,
self.beta_u,
self.y_tilde_u,
) = project_dual_params_onto_inducing_points(
Z=self.Z,
kernel=self.kernel,
train_loader=train_loader,
# alpha=self.alpha,
beta_diag=self.beta_diag,
y_tilde=self.y_tilde,
output_dim=self.output_dim,
num_data=self.num_data,
prior_precision=self.prior_precision,
jitter=self.jitter,
device=self.device,
)
self.alpha_u = self.alpha_u.detach().cpu()
self.beta_u = self.beta_u.detach().cpu()
self.y_tilde_u = self.y_tilde_u.detach().cpu()
logger.info("Finished projecting dual params onto inducing points")
# Calculate and cache quantities for predictions
self.Kzz = self.kernel(self.Z, self.Z)
num_inducing = self.Kzz.shape[-1]
self.Iz = (
torch.eye(num_inducing, dtype=torch.float64)
.to(self.Z.device)[None, ...]
.repeat(self.output_dim, 1, 1)
)
self.Kzz += self.Iz * self.jitter
self.Kzz = self.Kzz.detach().cpu()
assert self.beta_u.shape == self.Kzz.shape
self.Iz = self.Iz.detach().cpu()
KzzplusBeta = (self.Kzz + self.beta_u) + self.Iz * self.jitter
self.Lm = cholesky_add_jitter_until_psd(self.Kzz, jitter=self.jitter)
self.Lb = cholesky_add_jitter_until_psd(KzzplusBeta, jitter=self.jitter)
def loss(self, x: InputData, y: OutputData):
f = self.network(x)
neg_log_likelihood = self.likelihood.nn_loss(f=f, y=y)
neg_log_prior = self.prior.nn_loss()
return neg_log_likelihood + neg_log_prior
@torch.no_grad()
def update(
self, data_loader: DataLoader = None, x: InputData = None, y: OutputData = None
):
if data_loader is None:
if x is None or y is None:
raise NotImplementedError
else:
data_loader = DataLoader(
TensorDataset(*(x, y)),
batch_size=self.dual_batch_size,
shuffle=False,
)
logger.info("Updating dual params...")
alpha_new, beta_diag_new, y_tilde_new = calc_dual_params(
network=self.network,
train_loader=data_loader,
likelihood=self.likelihood,
output_dim=self.output_dim,
device=self.device,
)
logger.info("Finished calculating new dual params")
# Project dual parameters onto inducing points
logger.info("Project new dual params onto inducing points...")
(
alpha_u_new,
beta_u_new,
y_tilde_u_new,
) = project_dual_params_onto_inducing_points(
Z=self.Z,
kernel=self.kernel,
train_loader=data_loader,
beta_diag=beta_diag_new,
y_tilde=y_tilde_new,
output_dim=self.output_dim,
num_data=self.num_data,
prior_precision=self.prior_precision,
jitter=self.jitter,
device=self.device,
)
logger.info("Finished projecting new dual params onto inducing points")
logger.info("Adding new and old dual params ")
self.beta_u += beta_u_new.detach().cpu()
self.y_tilde_u += y_tilde_u_new.detach().cpu()
logger.info("Finished adding new and old dual params")
self.alpha_u = calc_alpha_u(
self.Kzz,
beta_u=self.beta_u,
y_tilde_u=self.y_tilde_u,
output_dim=self.output_dim,
jitter=self.jitter,
)
self.alpha_u = self.alpha_u.detach().cpu()
logger.info("Caching tensors for faster predictions...")
KzzplusBeta = (self.Kzz + self.beta_u) + self.Iz * self.jitter
self.Lb = cholesky_add_jitter_until_psd(KzzplusBeta, jitter=self.jitter)
logger.info("Finished caching tensors for faster predictions")
def optimize_prior_precision(
self,
pred_type, # "nn" or "gp"
method="grid", # "grid" or "bo"
val_loader: DataLoader = None,
n_samples: int = 100,
prior_prec_min: float = 1e-8,
prior_prec_max: float = 1.0,
num_trials: int = 20,
):
prior_prec_before = self.prior_precision
logger.info(f"prior_prec_before {prior_prec_before}")
nll_before = self.nlpd(
data_loader=val_loader,
pred_type=pred_type,
n_samples=n_samples,
# prior_prec=prior_prec,
)
logger.info(f"nll_before {nll_before}")
if method == "grid":
log_prior_prec_min = np.log(prior_prec_min)
log_prior_prec_max = np.log(prior_prec_max)
interval = torch.logspace(
log_prior_prec_min, log_prior_prec_max, num_trials
)
prior_precs, nlls = [], []
for prior_prec in interval:
prior_prec = prior_prec.item()
# self.update_pred_fn(prior_prec)
self.prior_precision = prior_prec
nll = self.nlpd(
data_loader=val_loader,
pred_type=pred_type,
n_samples=n_samples,
prior_prec=prior_prec,
)
nll = nll.detach().numpy()
logger.info(f"Prior prec {prior_prec} nll: {nll}")
nlls.append(nll)
prior_precs.append(prior_prec)
best_nll = np.min(nlls)
best_prior_prec = prior_precs[np.argmin(nlls)]
elif method == "bo":
from ax.service.managed_loop import optimize
def nlpd_objective(params):
nll = self.nlpd(
data_loader=val_loader,
pred_type=pred_type,
n_samples=n_samples,
prior_prec=params["prior_prec"],
)
if isinstance(nll, torch.Tensor):
return nll.detach().numpy()
else:
return nll
best_parameters, values, experiment, model = optimize(
parameters=[
{
"name": "prior_prec",
"type": "range",
"bounds": [prior_prec_min, prior_prec_max],
"log_scale": False,
},
],
evaluation_function=nlpd_objective,
objective_name="NLPD",
minimize=True,
total_trials=num_trials,
)
best_prior_prec = best_parameters["prior_prec"]
best_nll = values[0]["NLPD"]
else:
raise NotImplementedError
# If worse than original then reset
if nll_before < best_nll:
best_nll = nll_before
best_prior_prec = prior_prec_before
for x, y in val_loader:
# TODO this is just here for debugging
f_mean, f_var = self.predict_f(x.to(self.device), full_cov=False)
logger.info(f"f_var after BO=: {f_var}")
break
logger.info(f"Best prior prec {best_prior_prec} with nll: {best_nll}")
# self.update_pred_fn(best_prior_prec)
self.prior_precision = best_prior_prec
def nlpd(
self,
data_loader: DataLoader,
pred_type: str = "gp",
n_samples: int = 100,
prior_prec: Optional[float] = None,
):
if prior_prec:
self.prior_precision = prior_prec
# self.update_pred_fn(prior_prec)
try:
if isinstance(self.likelihood, likelihoods.CategoricalLh) or isinstance(
self.likelihood, likelihoods.BernoulliLh
):
py, targets = [], []
for x, y in data_loader:
x = x.to(self.device)
p, _ = self(x=x, pred_type=pred_type, num_samples=n_samples)
py.append(p)
targets.append(y.to(self.device))
targets = torch.cat(targets, dim=0).cpu().numpy()
probs = torch.cat(py).cpu().numpy()
if isinstance(self.likelihood, likelihoods.BernoulliLh):
dist = dists.Bernoulli(torch.Tensor(probs[:, 0]))
elif isinstance(self.likelihood, likelihoods.CategoricalLh):
dist = dists.Categorical(torch.Tensor(probs))
else:
raise NotImplementedError
nll = -dist.log_prob(torch.Tensor(targets)).mean().numpy()
elif isinstance(self.likelihood, likelihoods.Gaussian):
nlls = []
for x, y in data_loader:
f_mean, f_var = self.predict_f(x.to(self.device), full_cov=False)
if pred_type in "nn":
f_mean = self.network(x)
nll = -self.likelihood.log_prob(
f=f_mean, y=y.to(self.device), f_var=f_var
)
nlls.append(nll)
nlls = torch.concat(nlls, 0)
nll = torch.mean(nlls, 0)
except RuntimeError:
nll = torch.inf
return nll
@property
def prior_precision(self):
return self._prior_precision
@prior_precision.setter
def prior_precision(self, prior_precision):
old_prior_precision = self._prior_precision
self._prior_precision = prior_precision
self.prior.prior_precision = prior_precision
# Rebuild dual params with new prior precision
# TODO probably needs to have if self.beta_u exists
if self.beta_u is not None:
self.beta_u = self.beta_u * old_prior_precision / prior_precision
KzzplusBeta = (self.Kzz + self.beta_u) + self.Iz * self.jitter
self.Lb = cholesky_add_jitter_until_psd(KzzplusBeta, jitter=self.jitter)
self.alpha_u = calc_alpha_u(
self.Kzz,
beta_u=self.beta_u,
y_tilde_u=self.y_tilde_u,
output_dim=self.output_dim,
jitter=self.jitter,
)
@property
def num_data(self) -> int:
return self._num_data
def project_dual_params_onto_inducing_points(
Z,
kernel: NTK,
train_loader: DataLoader,
# alpha: Alpha,
beta_diag: BetaDiag,
y_tilde: Lambda,
output_dim: int,
num_data: int,
prior_precision: float,
jitter: float = 1e-3,
device: str = "cpu",
):
num_inducing = Z.shape[0]
dtype = Z.dtype
alpha_u = torch.zeros((output_dim, num_inducing), dtype=dtype).cpu()
y_tilde_u = torch.zeros((output_dim, num_inducing), dtype=dtype).cpu()
beta_u = torch.zeros((output_dim, num_inducing, num_inducing), dtype=dtype).cpu()
for output_c in range(output_dim):
start_idx, end_idx = 0, 0
logging.info(f"Computing covariance for output dim {output_c+1}/{output_dim}")
for batch in train_loader:
x_i, y_i = batch[0], batch[1]
x_i, y_i = x_i.to(device), y_i.to(device)
batch_size = x_i.shape[0]
end_idx = start_idx + batch_size
Kui_c = kernel(Z, x_i, index=output_c).cpu()
y_tilde_batch = y_tilde[start_idx:end_idx, output_c]
beta_diag_batch = beta_diag[start_idx:end_idx, output_c]
y_tilde_u_batch = torch.einsum("mb, b -> m", Kui_c, y_tilde_batch)
beta_batch = torch.einsum("mb, b, nb -> mn", Kui_c, beta_diag_batch, Kui_c)
# alpha_u_batch = calc_alpha_u(Kui_c, alpha=alpha_batch)
y_tilde_u[output_c] += y_tilde_u_batch.cpu()
# alpha_u[output_c] += alpha_u_batch.cpu()
beta_u[output_c] += beta_batch.cpu() / (prior_precision * num_data)
start_idx = end_idx
del Kui_c
torch.cuda.empty_cache()
Kzz_c = (
kernel(Z, Z, index=output_c).cpu()
+ torch.eye(num_inducing, device="cpu") * jitter
)
torch.cuda.empty_cache()
# beta_u = beta_u / (prior_precision * num_data)
alpha_u[output_c] = torch.linalg.solve(
(Kzz_c + beta_u[output_c]), y_tilde_u[output_c]
)
# alpha_u[output_c] = torch.linalg.solve(Kzz_c, alpha_u[output_c])
torch.cuda.empty_cache()
return alpha_u.to(device), beta_u.to(device), y_tilde_u.to(device)
def calc_dual_params(
network: nn.Module,
likelihood: likelihoods.Likelihood,
train_loader: DataLoader,
output_dim: int,
device: str = "cpu",
):
num_data = len(train_loader.dataset)
items_shape = (num_data, output_dim)
dtype = train_loader.dataset[0][0].dtype
# rename lambda_1 is Lambda, lamba2 is beta
y_tilde = torch.zeros(items_shape, dtype=dtype).cpu()
beta_diag = torch.zeros(items_shape, dtype=dtype).cpu()
alpha = torch.zeros(items_shape, dtype=dtype).cpu()
# Calculate dual params at data. Actually calc beta_diag and y_tilde
start_idx, end_idx = 0, 0
for x, y in train_loader:
x, y = x.to(device), y.to(device)
batch_size = x.shape[0]
f = network(x)
if f.ndim == 1:
f = f.unsqueeze(-1)
beta_batch = calc_beta(likelihood=likelihood, F=f)
alpha_batch = calc_alpha(likelihood=likelihood, Y=y, F=f)
y_tilde_batch = calc_y_tilde(F=f, alpha=alpha_batch, beta=beta_batch)
beta_diag_batch = torch.vmap(torch.diag)(beta_batch)
end_idx = start_idx + batch_size
y_tilde[start_idx:end_idx] = y_tilde_batch
beta_diag[start_idx:end_idx] = beta_diag_batch
alpha[start_idx:end_idx] = alpha_batch
start_idx = end_idx
return alpha, beta_diag, y_tilde
@torch.no_grad()
def calc_y_tilde_u(Kzx, y_tilde: Lambda):
return torch.matmul(Kzx, torch.transpose(y_tilde, -1, -2)[..., None])[..., 0]
@torch.no_grad()
def calc_alpha_u(
Kzz, beta_u: BetaInducing, y_tilde_u: Lambda, output_dim: int, jitter: float = 1e-3
) -> AlphaInducing:
Iz = (
torch.eye(Kzz.shape[-1], dtype=torch.float64)
.to(Kzz.device)[None, ...]
.repeat(output_dim, 1, 1)
)
KzzplusBeta = (Kzz + beta_u) + Iz * jitter
alpha_u = torch.linalg.solve(KzzplusBeta, y_tilde_u[..., None])[..., 0]
# alpha_u = torch.linalg.solve((Kzz + beta_u), y_tilde_u)
return alpha_u
@torch.no_grad()
def calc_beta_u(kernel: NTK, Z, X: InputData, beta_diag: Beta) -> BetaInducing:
Kzi = kernel(Z, X)
return torch.einsum("mb, b, nb -> mn", Kzi, beta_diag, Kzi)
@torch.no_grad()
def calc_alpha(likelihood: likelihoods.Likelihood, Y: OutputData, F: FuncData) -> Alpha:
assert F.ndim == 2
assert Y.shape[0] == F.shape[0]
# nll = likelihood.nn_loss
# nll_jacobian_fn = jacrev(nll)
# return -1 * nll_jacobian_fn(F, Y) # [num_data, output_dim]
# TODO put this back to using Jacobian
return likelihood.residual(f=F, y=Y) # [num_data, output_dim]
@torch.no_grad()
def calc_beta(likelihood: likelihoods.Likelihood, F: FuncData) -> Beta:
assert F.ndim == 2
return likelihood.Hessian(f=F)
@torch.no_grad()
def calc_y_tilde(F: FuncData, alpha: Alpha, beta: Beta) -> Lambda:
beta_diag = torch.diagonal(beta, dim1=-2, dim2=-1) # [num_data, output_dim]
return alpha + F * beta_diag
@torch.no_grad()
def build_ntk(
network: nn.Module,
num_data: int,
output_dim: int,
prior_precision: float = 1.0,
scaled: bool = True,
) -> NTK:
network = network.eval()
params = {k: v.detach() for k, v in network.named_parameters()}
@torch.no_grad()
def single_output_ntk_contraction(
x1: InputData, x2: InputData, i: int, full_cov: Optional[bool] = True
):
def fnet_single(params, x):
f = functional_call(network, params, (x.unsqueeze(0),))[:, i]
return f
# Compute J(x1)
jac1 = vmap(jacrev(fnet_single), (None, 0))(params, x1)
jac1 = [j.flatten(2) for j in jac1.values()]
# Compute J(x2)
jac2 = vmap(jacrev(fnet_single), (None, 0))(params, x2)
jac2 = [j.flatten(2) for j in jac2.values()]
# Compute J(x1) @ J(x2).T
einsum_expr = None
if full_cov:
einsum_expr = "Naf,Mbf->NMab"
else:
einsum_expr = "Naf,Maf->NMa"
result = torch.stack(
[torch.einsum(einsum_expr, j1, j2) for j1, j2 in zip(jac1, jac2)]
)
result = result.sum(0)
if full_cov:
if scaled:
return 1 / (prior_precision * num_data) * result[..., 0, 0]
else:
return result[..., 0, 0]
else:
result = torch.diagonal(result[..., 0], dim1=-1, dim2=-2)
if scaled:
return 1 / (prior_precision * num_data) * result
else:
return result
@torch.no_grad()
def ntk(X1: InputData, X2: Optional[InputData], full_cov: Optional[bool] = True):
dtype = X1.dtype
if X2 is None:
X2 = X1
if full_cov:
K = torch.empty(output_dim, X1.shape[0], X2.shape[0], dtype=dtype).to(
X1.device
)
else:
K = torch.empty(output_dim, X1.shape[0], dtype=dtype).to(X1.device)
for i in range(output_dim):
K[i, ...] = single_output_ntk_contraction(X1, X2, i=i, full_cov=full_cov)
return K
@torch.no_grad()
def kernel(
X1: InputData,
X2: Optional[InputData],
full_cov: Optional[bool] = True,
index: Optional[int] = None,
):
if index is not None:
return single_output_ntk_contraction(
x1=X1, x2=X2, i=index, full_cov=full_cov
)
else:
return ntk(X1=X1, X2=X2, full_cov=full_cov)
return kernel
def cholesky_add_jitter_until_psd(x, jitter: float = 1e-5, jitter_factor=4):
try:
L = torch.linalg.cholesky(x, upper=True)
return L
except RuntimeError:
logger.info(f"Cholesky failed so adding more jitter={jitter}")
Iz = torch.eye(x.shape[-1]).to(x.device)
jitter = jitter_factor * jitter
x += Iz * jitter
return cholesky_add_jitter_until_psd(x, jitter=jitter)