-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper.py
117 lines (108 loc) · 3.85 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python3
from collections import OrderedDict
import numpy as np
import torch.nn as nn
class EarlyStopper:
def __init__(self, patience: int = 1, min_delta: float = 0):
self.patience = patience
self.min_delta = min_delta
self.counter = 0
self.min_val = np.inf
def __call__(self, val):
if val < self.min_val:
self.min_val = val
self.counter = 0
elif val > (self.min_val + self.min_delta):
self.counter += 1
if self.counter >= self.patience:
return True
return False
class CIFAR10Net(nn.Module):
def __init__(self, in_channels: int = 3, n_out: int = 10, use_tanh: bool = False):
super().__init__()
self.output_size = n_out
activ = nn.Tanh if use_tanh else nn.ReLU
self.cnn_block = nn.Sequential(
OrderedDict(
[
(
"conv1",
nn.Conv2d(
in_channels=in_channels,
out_channels=64,
kernel_size=(5, 5),
stride=(1, 1),
),
),
("relu1", nn.ReLU()),
(
"maxpool1",
nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
nn.MaxPool2d(kernel_size=3, stride=2),
),
),
(
"conv2",
nn.Conv2d(
in_channels=64,
out_channels=96,
kernel_size=(3, 3),
stride=(1, 1),
),
),
("relu2", nn.ReLU()),
(
"maxpool2",
nn.Sequential(
nn.ZeroPad2d((0, 1, 0, 1)),
nn.MaxPool2d(kernel_size=3, stride=2),
),
),
(
"conv3",
nn.Conv2d(
in_channels=96,
out_channels=128,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
),
),
("relu3", nn.ReLU()),
(
"maxpool3",
nn.Sequential(
nn.ZeroPad2d((1, 1, 1, 1)),
nn.MaxPool2d(kernel_size=3, stride=2),
),
),
]
)
)
self.lin_block = nn.Sequential(
OrderedDict(
[
("flatten", nn.Flatten()),
("dense1", nn.Linear(in_features=3 * 3 * 128, out_features=512)),
("activ1", activ()),
("dense2", nn.Linear(in_features=512, out_features=256)),
("activ2", activ()),
(
"dense3",
nn.Linear(in_features=256, out_features=self.output_size),
),
]
)
)
for module in self.modules():
if isinstance(module, nn.Conv2d):
nn.init.constant_(module.bias, 0.0)
nn.init.xavier_normal_(module.weight)
if isinstance(module, nn.Linear):
nn.init.constant_(module.bias, 0.0)
nn.init.xavier_uniform_(module.weight)
def forward(self, x):
x = self.cnn_block(x)
out = self.lin_block(x)
return out