-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_types.py
40 lines (30 loc) · 1.45 KB
/
custom_types.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#!/usr/bin/env python3
from typing import Callable, Optional, Tuple, Union
import torch
from jaxtyping import Float
# InputData can be images
InputData = Float[torch.Tensor, "num_data ..."]
# OutputData can be classification or regression
ClassificationData = Float[torch.Tensor, "num_data"]
RegressionData = Float[torch.Tensor, "num_data output_dim"]
OutputData = Union[RegressionData, ClassificationData]
Data = Tuple[InputData, OutputData]
# Input = Float[torch.Tensor, "batch_size input_dim"]
OutputMean = Float[torch.Tensor, "batch_size output_dim"]
OutputVar = Float[torch.Tensor, "batch_size output_dim"]
FuncData = Float[torch.Tensor, "num_data output_dim"]
FuncMean = Float[torch.Tensor, "num_data output_dim"]
FuncVar = Float[torch.Tensor, "num_data output_dim"]
Alpha = Float[torch.Tensor, "num_data output_dim"]
Beta = Float[torch.Tensor, "num_data num_data output_dim"]
BetaDiag = Float[torch.Tensor, "num_data output_dim"]
Lambda = Float[torch.Tensor, "num_data output_dim"]
AlphaInducing = Float[torch.Tensor, "output_dim num_inducing"]
BetaInducing = Float[torch.Tensor, "output_dim num_inducing num_inducing"]
FuncData = Float[torch.Tensor, "num_data output_dim"]
InducingPoints = Float[torch.Tensor, "num_inducing ..."]
FullCov = Optional[bool]
Index = Optional[int]
NTK = Callable[[InputData, InputData, FullCov, Index], torch.Tensor]
NTK_single = Callable[[InputData, InputData, int, FullCov], torch.Tensor]
TestInput = Float[torch.Tensor, "num_test ..."]