-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.py
60 lines (48 loc) · 1.53 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
from torch.utils.data import random_split, DataLoader
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import RichProgressBar
from src.models.transformer import TransformerModel
from src.data import PatientEmbeddingDataset, custom_collate_fn
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
def main():
# Generate dataset
NUM_PATIENTS = 585
EMBEDDING_SIZE = 1024
dataset = PatientEmbeddingDataset(NUM_PATIENTS, EMBEDDING_SIZE)
# Determine split sizes
train_size = int(0.8 * len(dataset)) # 80% of data for training
test_size = len(dataset) - train_size # Remaining 20% for testing
# Split the dataset
train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
train_dataloader = DataLoader(
train_dataset,
batch_size=32,
shuffle=True,
collate_fn=custom_collate_fn,
num_workers=31,
)
test_dataloader = DataLoader(
test_dataset,
batch_size=32,
shuffle=False,
collate_fn=custom_collate_fn,
num_workers=31,
)
model = TransformerModel(
input_dim=EMBEDDING_SIZE,
hidden_dim=2048,
n_layers=4,
n_heads=8,
dropout_rate=0.1,
).to(device)
trainer = Trainer(
max_epochs=10,
log_every_n_steps=1,
callbacks=[RichProgressBar()],
)
trainer.fit(model, train_dataloader)
trainer.test(model, test_dataloader)
if __name__ == "__main__":
main()