-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDiscriminator_attn.py
101 lines (86 loc) · 3.02 KB
/
Discriminator_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torch.nn as nn
from GenAttn import CrossAttention, AttentionDownSampled
class CNNBlock(nn.Module):
'''
CNN block for Discriminator
This class defines a convolutional neural network (CNN) block designed for use in a Discriminator model.
The block consists of a series of operations that process input data through convolutional layers, batch
normalization, and a LeakyReLU activation function. It is commonly used to create the foundational layers
of a Discriminator network in applications like image synthesis and GANs (Generative Adversarial Networks).
Args:
in_channels (int): Number of input channels to the convolutional layer.
out_channels (int): Number of output channels from the convolutional layer.
stride (int): Stride value for the convolution operation.
'''
def __init__(self, in_channels, out_channels, stride):
super(CNNBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
in_channels, out_channels, 4, stride, 1, bias=False, padding_mode="reflect"
),
nn.BatchNorm2d(out_channels),
nn.LeakyReLU(0.2),
)
def forward(self, x):
return self.conv(x)
class Discriminator_attn(nn.Module):
def __init__(self, in_channels=3, features=[64, 128, 128, 256, 512]):
super().__init__()
self.attn = AttentionDownSampled(3,32)
self.initial = nn.Sequential(
nn.Conv2d(
in_channels * 2,
features[0],
kernel_size=4,
stride=2,
padding=1,
padding_mode="reflect",
),
nn.LeakyReLU(0.2),
)
self.initial1 = nn.Sequential(
nn.Conv2d(
4,
features[0],
kernel_size=4,
stride=2,
padding=1,
padding_mode="reflect",
),
nn.LeakyReLU(0.2),
)
layers = []
in_channels = features[0]
for feature in features[1:]:
layers.append(
CNNBlock(in_channels, feature, stride=1 if feature == features[-1] else 2),
)
in_channels = feature
layers.append(
nn.Conv2d(
in_channels, 1, kernel_size=4, stride=1, padding=1, padding_mode="reflect"
),
)
self.model = nn.Sequential(*layers)
def forward(self, x, y):
x_a, y_a, l_a = self.attn(x, y)
x_a = x * x_a
y_a = y * y_a
if y.shape[1] == 1:
a = torch.cat([x_a, y_a], dim=1)
a = self.initial1(a)
else:
a = torch.cat([x_a, y_a], dim=1)
a = self.initial(a)
a = self.model(a)
return a
def test():
x = torch.randn((1, 3, 512, 512))
y = torch.randn((1, 3, 512, 512))
model = Discriminator_attn(in_channels=3)
preds = model(x, y)
print(preds)
print(preds.shape)
if __name__ == "__main__":
test()